Long Duration Activity and Metabolic Control after Spinal Cord Injury
脊髓损伤后的长期活动和代谢控制
基本信息
- 批准号:9478256
- 负责人:
- 金额:$ 31.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressBiogenesisC-reactive proteinCardiovascular DiseasesCarrier ProteinsCell RespirationChronicClinicClinicalCost SavingsDiabetes MellitusDoseElectric StimulationElectron TransportEndocrine GlandsEnergy MetabolismEnzymesExerciseFatigueFiberFosteringFrequenciesGene Expression RegulationGene ProteinsGeneral PopulationGenesGlucagonGlucoseGlycosylated HemoglobinGlycosylated hemoglobin AGoalsHealthHome environmentHomeostasisHourHumanIndividualInflammationInsulinInterleukin-6InterventionLimb structureMeasuresMetabolicMetabolic ControlMetabolic DiseasesMetabolic syndromeMetabolismMethodsMitochondriaMuscleMuscle FatigueMuscle FibersMuscle MitochondriaMusculoskeletalMusculoskeletal SystemOGTTOPA1 geneObesityParalysedPathway interactionsPatient Self-ReportPatientsPhenotypePhysiologic pulsePhysiologicalPlayPopulationPropertyProtective AgentsProteinsProtocols documentationQuality of lifeRegulationRehabilitation therapyReportingResearchResistanceRiskRoleSkeletal MuscleSpinal cord injuryStimulusStressTestingTherapeuticTimeTissuesTrainingTranslatingWheelchairsbaseblood glucose regulationcohortcostcost effectivecytokineexercise programexperiencefibroblast growth factor 21glucose metabolismhealth related quality of lifehuman modelimprovedinnovationmetabolic ratemortalitynovelphysical inactivitypreventpublic health relevancerehabilitation strategystandard caretotal energy expendituretranscription factor
项目摘要
DESCRIPTION (provided by applicant): Skeletal muscle is the largest endocrine organ in the body, playing an indispensable role in glucose homeostasis. Spinal cord injury (SCI) prevents skeletal muscle from carrying out this important function. Dysregulation of glucose metabolism precipitates high rates of metabolic syndrome, diabetes, and other secondary health conditions (SHCs) of SCI. These SHCs exert a negative influence on health-related quality of life (HRQOL). New discoveries support that a low level of activity throughout the day offers a more effective metabolic stimulus than brief, episodic exercise bouts. The proposed study will translate this emerging concept to the population of individuals with SCI by using low-force, long-duration electrical muscle stimulation to subsidize daily activity levels. Recently, we demonstrated that this type of stimulation up-regulates key genes that foster an oxidative, insulin-sensitive phenotype in paralyzed muscle. We will now test whether this type of activity can improve glucose homeostasis and metabolic function in patients with chronic paralysis. We hypothesize that improvements in metabolic function will be accompanied by a reduction in SHCs and a concomitant improvement in self-reported HRQOL. Three specific aims will address these hypotheses. Aim 1 will compare 2 doses of non-tetanizing stimulation (1 and 3 Hz) on muscle fatigue resistance and cellular adaptations in pathways that promote oxidative metabolism, muscle fiber type and mitochondrial biogenesis. Aim 2 will compare the effects of these same 2 frequencies of stimulation on clinically-important metrics of metabolic function and systemic inflammation. Finally, Aim 3 will measure SHCs and HRQOL in the training cohorts versus individuals who receive standard care (no muscular activation). We hypothesize that metabolic improvements achieved in Specific Aim 2 will be associated with fewer SHCs and higher self-reported HRQOL in patients with chronic SCI. The long-term goal of this research is to develop a rehabilitation strategy to protect the musculoskeletal health, metabolic function, and health-related quality of life of people living with complete SCI. This study is novel because it uses an intervention that is feasible, low-cost, and is rated to be convenient and unobtrusive by our pilot subjects. This intervention has excellent potential for efficacy and is likely to be economical and easily integrated into the daily lives of individuals with SCI.
描述(由申请人提供):骨骼肌是体内最大的内分泌器官,在葡萄糖稳态中发挥着不可或缺的作用。脊髓损伤(SCI)阻止骨骼肌执行这一重要功能,导致葡萄糖代谢失调。代谢综合征、糖尿病和 SCI 的其他继发性健康状况 (SHC) 这些 SHC 对健康相关的生活质量 (HRQOL) 产生负面影响。新的发现表明,全天低水平的活动比短暂的、间歇性的运动能提供更有效的代谢刺激。拟议的研究将通过使用低强度、长时间的电流将这一新兴概念应用到患有 SCI 的人群中。最近,我们证明这种类型的刺激会上调促进瘫痪肌肉氧化、胰岛素敏感表型的关键基因。我们现在将测试这种类型的活动是否可以改善葡萄糖稳态和代谢。我们探索了代谢功能的改善将伴随着 SHC 的减少以及自我报告的 HRQOL 的改善,目标 1 将比较 2 种非破伤风剂量。刺激(1 和 3 Hz)对肌肉抗疲劳性和促进氧化代谢、肌纤维类型和线粒体生物合成途径的细胞适应的影响,目标 2 将比较这 2 种相同频率的刺激对的影响。最后,目标 3 将测量训练组与接受标准护理(无肌肉激活)的个体的 SHC 和 HRQOL。我们发现,特定目标 2 中实现的代谢改善将与此相关。慢性 SCI 患者的 SHC 更少,自我报告的 HRQOL 更高 这项研究的长期目标是制定康复策略,以保护人们的肌肉骨骼健康、代谢功能和健康相关的生活质量。这项研究是新颖的,因为它使用了一种可行、低成本的干预措施,并且被我们的试点受试者评价为方便且不引人注目,并且可能是经济且容易的。融入 SCI 患者的日常生活。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD K. SHIELDS其他文献
RICHARD K. SHIELDS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD K. SHIELDS', 18)}}的其他基金
Long Duration Activity and Metabolic Control after Spinal Cord Injury
脊髓损伤后的长期活动和代谢控制
- 批准号:
8960498 - 财政年份:2015
- 资助金额:
$ 31.64万 - 项目类别:
Novel Intervention to Influence Muscle Plasticity in Veterans with SCI
影响 SCI 退伍军人肌肉可塑性的新型干预措施
- 批准号:
8894382 - 财政年份:2011
- 资助金额:
$ 31.64万 - 项目类别:
Novel Intervention to Influence Muscle Plasticity in Veterans with SCI
影响 SCI 退伍军人肌肉可塑性的新型干预措施
- 批准号:
8898720 - 财政年份:2011
- 资助金额:
$ 31.64万 - 项目类别:
Novel Intervention to Influence Muscle Plasticity in Veterans with SCI
影响 SCI 退伍军人肌肉可塑性的新型干预措施
- 批准号:
7863128 - 财政年份:2011
- 资助金额:
$ 31.64万 - 项目类别:
Mechanical stress and skeletal plasticity after spinal cord injury in humans
人类脊髓损伤后的机械应力和骨骼可塑性
- 批准号:
7983447 - 财政年份:2010
- 资助金额:
$ 31.64万 - 项目类别:
Mechanical stress and skeletal plasticity after spinal cord injury in humans
人类脊髓损伤后的机械应力和骨骼可塑性
- 批准号:
8117001 - 财政年份:2010
- 资助金额:
$ 31.64万 - 项目类别:
Mechanical stress and skeletal plasticity after spinal cord injury in humans
人类脊髓损伤后的机械应力和骨骼可塑性
- 批准号:
8302328 - 财政年份:2010
- 资助金额:
$ 31.64万 - 项目类别:
Mechanical stress and skeletal plasticity after spinal cord injury in humans
人类脊髓损伤后的机械应力和骨骼可塑性
- 批准号:
8476243 - 财政年份:2010
- 资助金额:
$ 31.64万 - 项目类别:
Mechanical stress and skeletal plasticity after spinal cord injury in humans
人类脊髓损伤后的机械应力和骨骼可塑性
- 批准号:
8675883 - 财政年份:2010
- 资助金额:
$ 31.64万 - 项目类别:
相似国自然基金
UMSC-Exo通过调控Ribosome biogenesis诱导心肌再生的策略及机制研究
- 批准号:82370264
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
果蝇jamesbond基因的影增强子生物学功能和演化起源研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脂滴生物学起源的高分子动态平均场理论研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
黄酮类化合物生物合成途径的起源与演化的分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多细胞生物起源和早期演化
- 批准号:
- 批准年份:2019
- 资助金额:1050 万元
- 项目类别:创新研究群体项目
相似海外基金
The Role of ERRa in liver lipid dysfunction and pathology
ERRa 在肝脂质功能障碍和病理学中的作用
- 批准号:
10833730 - 财政年份:2023
- 资助金额:
$ 31.64万 - 项目类别:
The Role of ERRa in liver lipid dysfunction and pathology
ERRa 在肝脂质功能障碍和病理学中的作用
- 批准号:
10345454 - 财政年份:2021
- 资助金额:
$ 31.64万 - 项目类别:
The Role of ERRa in liver lipid dysfunction and pathology
ERRa 在肝脂质功能障碍和病理学中的作用
- 批准号:
10531889 - 财政年份:2021
- 资助金额:
$ 31.64万 - 项目类别:
Targeting Mitochondrial Fission for Neuroprotection in Diabetic Neuropathy
靶向线粒体裂变对糖尿病神经病变的神经保护作用
- 批准号:
10017486 - 财政年份:2018
- 资助金额:
$ 31.64万 - 项目类别:
Targeting Mitochondrial Fission for Neuroprotection in Diabetic Neuropathy
靶向线粒体裂变对糖尿病神经病变的神经保护作用
- 批准号:
9925077 - 财政年份:2018
- 资助金额:
$ 31.64万 - 项目类别: