Endothelial function in human diabetes: role of mitochondrial fission proteins
人类糖尿病中的内皮功能:线粒体裂变蛋白的作用
基本信息
- 批准号:9104727
- 负责人:
- 金额:$ 57.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2021-02-28
- 项目状态:已结题
- 来源:
- 关键词:AcuteArteriesBindingBiologicalBiological AssayBiological AvailabilityBlindnessBlood VesselsCellsChemicalsChronicDOK1 geneDataDevelopmentDiabetes MellitusDiabetic AngiopathiesDockingDrug DesignDynaminEndothelial CellsEndotheliumEnzymesEventExposure toFunctional disorderFutureGlucoseGoalsGrantGuanosine Triphosphate PhosphohydrolasesHealthHela CellsHumanHydrolysisHyperglycemiaHypoglycemiaImpairmentIndividualKidney DiseasesLeadLigandsMeasuresMediatingMembraneMicrovascular DysfunctionMitochondriaModelingMolecularMorbidity - disease rateMyocardial InfarctionNeuropathyNitric OxideNon-Insulin-Dependent Diabetes MellitusOuter Mitochondrial MembraneOxidative StressPathway interactionsPatientsPeripheral Vascular DiseasesPharmaceutical ChemistryPositioning AttributePreclinical TestingPrevalenceProcessProductionProteinsReactive Oxygen SpeciesRoleSecondary toStrokeStructureTest ResultTestingTherapeuticTherapeutic InterventionTissuesVascular DiseasesVasodilationarteriolebaseclinically relevantcombatcostdesigndiabetic patientdrug testingeffective therapyefficacy testingendothelial dysfunctionglycemic controlhuman subjectin vitro Assayin vitro testingin vivoinhibitor/antagonistinnovationmacrovascular diseasemitochondrial dysfunctionmortalitynew therapeutic targetnovelnovel therapeutic interventionpandemic diseasepreventpublic health relevancesmall moleculetranslational approachvascular endothelial dysfunctionvascular inflammation
项目摘要
DESCRIPTION (provided by applicant): The prevalence of diabetes (DM) worldwide has soared above 380 million individuals. The primary causes of morbidity and mortality in these patients are diabetes-related macrovascular and microvascular disease. DM vascular disease has critical pathophysiological differences from vascular disease seen in non-DM patients. Currently therapies to combat vascular disease are significantly less effective in DM patients compared to non-DM patients. Novel therapies targeted at disrupting pathophysiological pathways of particular importance in DM vascular disease may offer significant benefits for the reduction of adverse vascular events in DM. DM vascular disease begins with the development of vascular endothelial dysfunction-a state characterized by increased vascular inflammation and increased vasoconstrictive and pro-thrombotic tendencies. In DM, we and others have discovered endothelial dysfunction can be initiated by critical changes in endothelial mitochondrial function occurring secondary to excessive mitochondrial fission. These changes appear both following acute exposure to abnormal glucose as well as being evident during the chronic abnormal glucose exposures of DM. Our preliminary data suggest both acute impairment of endothelial function by high or low glucose exposure and chronic DM endothelial dysfunction occur through a common mechanism-the activation and binding of dynamin-related protein-1 (Drp1), a cytosolic-based GTPase enzyme, to docking proteins located on the outer mitochondrial membrane. This binding initiates excessive mitochondrial fission and triggers mitochondrial and endothelial dysfunction. Further, our preliminary data strongly suggest Fis1 is the critical Drp1 docking protein in this process. This application employs an innovative translational approach that uniquely combines critical pharmacological and molecular studies targeting the Drp1-Fis1 interaction in intact human vessels and endothelial cells from human subjects with structure-based drug design and testing of resulting compounds in relevant patient-derived tissues. Our approach holds great promise to lead directly to identifying a first-i-class pharmacological agent that could significantly reduce heart attacks, strokes, peripheral vascular disease, renal disease, blindness, and neuropathy in the world's nearly 400 million cases of diabetes. In Aim 1, we will determine whether acute in vivo exposure to high or low glucose levels induces mitochondrial fission and excess mitochondrial reactive oxygen species production. Further, we will determine whether impairment of endothelium-dependent vasodilation and nitric oxide (NO) bioavailability in intact arterioles from DM patients is Drp1 and/or Fis1-dependent manner. In Aim 2, we will determine whether the chronic impairment of endothelium-dependent vasodilation and NO bioavailability in intact arterioles from human with DM can be reversed by suppression of Fis1 and/or Drp1 expression. In Aim 3, we will identify small molecules to that specifically disrupt the Drp1-Fis1 interaction, validate these findings, an test the efficacy these small molecules on ex vivo human arterioles from DM subjects.
描述(由适用提供):全球糖尿病(DM)的患病率飙升至3.8亿个人。这些患者发病率和死亡率的主要原因是与糖尿病有关的大血管和微血管疾病。 DM血管疾病在非DM患者中与血管疾病有严重的病理生理差异。与非DM患者相比,DM患者的当前对抗血管疾病的疗法明显较小。旨在破坏DM血管疾病特别重要的病理生理途径的新型疗法可能会为减少DM不良血管事件的减少带来重要好处。 DM血管疾病始于血管内皮功能障碍的发展,其特征是血管感染增加和血管收缩和促血栓性趋势增加。在DM中,我们和其他人发现内皮功能障碍可能是由于继发于多余的线粒体裂变的内皮线粒体功能的临界变化引发的。这些变化在急性暴露于异常葡萄糖之后出现,并且在DM的慢性异常葡萄糖暴露期间得到了证明。我们的初步数据表明,高葡萄糖暴露或低葡萄糖的急性损害以及慢性DM内皮功能障碍通过常见的机制 - 激活和结合动力蛋白相关蛋白1(DRP1)(DRP1),一种基于细胞质的GTPase酶的GTPase酶,可用于位于外部MINECBRAIN MENRAIR MENRIARE CRANE上。这种结合会引起过度的线粒体裂变,并触发线粒体和内皮功能障碍。此外,我们的初步数据强烈表明FIS1是此过程中关键的DRP1对接蛋白。该应用员工是一种创新的翻译方法,该方法唯一结合了针对人类受试者的完整人血管和内皮细胞中DRP1-FIS1相互作用的关键药理和分子研究,其基于结构的药物设计以及相关患者衍生的组织中所得化合物的测试。我们的方法具有巨大的前途,可以直接识别出一种I级药理学剂,该药理学剂可能会大大减少心脏病发作,中风,周围血管疾病,肾脏疾病,失明和神经病,并在世界上近4亿例糖尿病病例中。在AIM 1中,我们将确定急性体内暴露于高葡萄糖水平是否诱导线粒体裂变和线粒体活性氧的过量产生。此外,我们将确定来自DM患者完整小动脉中内皮依赖性血管舒张和一氧化氮(NO)生物利用度的损害是否是DRP1和/或FIS1依赖性方式。在AIM 2中,我们将确定是否可以通过抑制FIS1和/或DRP1表达来逆转内皮依赖性血管舒张的慢性损害和无dm人的生物利用度。在AIM 3中,我们将确定小分子特异性破坏DRP1-FIS1相互作用,验证这些发现,测试这些小分子对来自DM受试者的离体人动脉的有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael E Widlansky其他文献
Michael E Widlansky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael E Widlansky', 18)}}的其他基金
Impact of L. plantarum 299v supplementation on endothelial function and inflammation in humans with type 2 diabetes
补充植物乳杆菌 299v 对 2 型糖尿病患者内皮功能和炎症的影响
- 批准号:
10533776 - 财政年份:2020
- 资助金额:
$ 57.63万 - 项目类别:
Impact of L. plantarum 299v supplementation on endothelial function and inflammation in humans with type 2 diabetes
补充植物乳杆菌 299v 对 2 型糖尿病患者内皮功能和炎症的影响
- 批准号:
10132528 - 财政年份:2020
- 资助金额:
$ 57.63万 - 项目类别:
Impact of L. plantarum 299v supplementation on endothelial function and inflammation in humans with type 2 diabetes
补充植物乳杆菌 299v 对 2 型糖尿病患者内皮功能和炎症的影响
- 批准号:
10312807 - 财政年份:2020
- 资助金额:
$ 57.63万 - 项目类别:
Impact of L. plantarum 299v Supplementation on Endothelial Function and Systemic Inflammation
补充植物乳杆菌 299v 对内皮功能和全身炎症的影响
- 批准号:
9763052 - 财政年份:2019
- 资助金额:
$ 57.63万 - 项目类别:
Impact of L. plantarum 299v Supplementation on Endothelial Function and Systemic Inflammation
补充植物乳杆菌 299v 对内皮功能和全身炎症的影响
- 批准号:
10339353 - 财政年份:2019
- 资助金额:
$ 57.63万 - 项目类别:
Impact of L. plantarum 299v Supplementation on Endothelial Function and Systemic Inflammation
补充植物乳杆菌 299v 对内皮功能和全身炎症的影响
- 批准号:
10091510 - 财政年份:2019
- 资助金额:
$ 57.63万 - 项目类别:
Impact of L. plantarum 299v Supplementation on Endothelial Function and Systemic Inflammation
补充植物乳杆菌 299v 对内皮功能和全身炎症的影响
- 批准号:
9898445 - 财政年份:2019
- 资助金额:
$ 57.63万 - 项目类别:
Endothelial function in human diabetes: role of mitochondrial fission proteins
人类糖尿病中的内皮功能:线粒体裂变蛋白的作用
- 批准号:
9888401 - 财政年份:2016
- 资助金额:
$ 57.63万 - 项目类别:
Endothelial function in human diabetes: role of mitochondrial fission proteins
人类糖尿病中的内皮功能:线粒体裂变蛋白的作用
- 批准号:
9251901 - 财政年份:2016
- 资助金额:
$ 57.63万 - 项目类别:
Endothelial function in human diabetes: role of mitochondrial fission proteins
人类糖尿病中的内皮功能:线粒体裂变蛋白的作用
- 批准号:
9442819 - 财政年份:2016
- 资助金额:
$ 57.63万 - 项目类别:
相似国自然基金
m6A修饰的circPafah1b1结合UBA52介导p53泛素化在高肺血流性肺动脉高压中的作用及机制研究
- 批准号:82360069
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
巨噬细胞WEE1通过结合NF-κB p65激活炎症反应促进动脉粥样硬化的作用机制研究
- 批准号:82300532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
解析COL5A1结合纤维连接蛋白调控整合素信号传递对胸主动脉的保护作用
- 批准号:
- 批准年份:2022
- 资助金额:35 万元
- 项目类别:地区科学基金项目
低氧反应性RNA结合蛋白调控下游mRNA的可变剪接在肺动脉高压的发病机制研究以及可变剪接相关性新的干预靶点探索
- 批准号:
- 批准年份:2022
- 资助金额:150 万元
- 项目类别:
解析COL5A1结合纤维连接蛋白调控整合素信号传递对胸主动脉的保护作用
- 批准号:82260332
- 批准年份:2022
- 资助金额:35.00 万元
- 项目类别:地区科学基金项目
相似海外基金
Novel Mechanisms Underlying the Development of Atherosclerosis
动脉粥样硬化发展的新机制
- 批准号:
10589484 - 财政年份:2023
- 资助金额:
$ 57.63万 - 项目类别:
Ex Vivo Nanoparticle Drug Delivery Targeted to Human Allograft Endothelium
针对人同种异体移植物内皮的体外纳米颗粒药物输送
- 批准号:
10783379 - 财政年份:2023
- 资助金额:
$ 57.63万 - 项目类别:
Development of a Small Molecule Inhibitor of Fortilin for Atherosclerosis Treatment and Prevention
开发用于治疗和预防动脉粥样硬化的 Fortilin 小分子抑制剂
- 批准号:
10706870 - 财政年份:2023
- 资助金额:
$ 57.63万 - 项目类别:
Non-invasive imaging of reactive oxygen species in reperfusion injury myocardial infarction
再灌注损伤心肌梗死中活性氧的无创成像
- 批准号:
10716836 - 财政年份:2023
- 资助金额:
$ 57.63万 - 项目类别: