Machine learning of physiological variables to predict diagnose and treat cardiorespiratory instability
机器学习生理变量来预测诊断和治疗心肺不稳定
基本信息
- 批准号:9029396
- 负责人:
- 金额:$ 66.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcuteAlgorithmsAnimalsAttentionBiological Neural NetworksCaliforniaCardiovascular systemCaringClassificationClinicalClinical DataClinical Decision Support SystemsClinical TreatmentComplexCoupledCritical IllnessDataData CollectionData SetDevelopmentDiagnosisDiseaseEffectivenessElectronic Health RecordEngineeringEntropyEnvironmentEtiologyFamily suidaeFrequenciesFutureHealthHealthcareHemorrhageHemorrhagic ShockHomeostasisHourHumanHypovolemiaIndividualInjuryInstitutionIntensive Care UnitsInterventionLeadLearningLibrariesMachine LearningMeasuresMechanical ventilationMedicalMedical centerModelingMonitorNormal RangeOrganOrgan failurePathologic ProcessesPatient MonitoringPatient-Focused OutcomesPatientsPatternPhysiologic MonitoringPhysiologicalPrincipal Component AnalysisProcessPublic HealthRecommendationRefractoryResolutionResourcesResuscitationRiskRunningSamplingSensitivity and SpecificitySepsisShockSignal TransductionSpecificityStreamStressSystemTechniquesTestingTimeTraumaTriageUniversitiesValidationVariantWeaningWorkabstractingbaseclinical careclinically relevantcomputerized data processingcostdatabase structuredensitydesigndiagnostic accuracyearly onseteffective therapyfitnessforestgraphical user interfacehemodynamicshigh riskimprovedimproved outcomeinsightiterative designmortalitynovel strategiespatient populationpersonalized medicinepredictive modelingpredictive toolsprospectiveprototyperesponsesimulationsupport toolstreatment response
项目摘要
Project Summary/Abstract: If one could accurately predict who, when and why patients develop
cardiorespiratory instability (CRI), then effective preemptive treatments could be given to improve outcome and
better use care resources. However, CRI is often unrecognized until it is well established and patients are
more refractory to treatment, or progressed to organ injury. We have shown that an integrated monitoring
system alert obtained from continuous noninvasively acquired monitoring parameters and coupled to a care
algorithm improved step-down unit (SDU) patient outcomes. We also showed that advanced HR variability
analysis (sample entropy) identified SDU patients at CRI risk within 2 minutes, and if monitored for 5 minutes
differentiated between patients who would develop CRI or remain stable over the next 48 hours. We also
applied machine learning (ML) modeling to our clinically-relevant porcine model of hemorrhagic shock to
characterize responses to hypovolemia, hemorrhage, and resuscitation, predict which animals would or would
not collapse during hypovolemia, and identify occult bleeding 5 minutes earlier than with traditional monitoring.
We now propose to apply our work to vulnerable and invasively monitored ICU patients. We will develop
multivariable models through ML data-driven classification techniques such as regression, Fourier and
principal component analysis, artificial neural networks, random forest classification, etc. as well as more novel
approaches (temporal rule learning developed by our team; Bayesian Aggregation) to predict CRI in ICU
patients. We will first use our existing annotated high fidelity waveform MIMIC II clinical data set (4200
patients) to develop predictive models and differential signatures for various CRI drivers. We will also use our
high-density data collection and processing platform (Bernoulli) to prospectively collect data from ICUs in three
institutions: Univ. Pittsburgh (PITT), Univ. California (UC) Irvine and UC San Diego (initial algorithm
development conducted at PITT and validated in the UC systems). We will identify the number and type of
independent measures, sampling frequency, and lead time necessary to create robust algorithms to: 1) predict
impending CRI, 2) select the most effective treatments, 3) monitor treatment response, and 4) determine when
treatment has restored physiologic stability and can be stopped. We will also determine the smallest number
and types of parameters coupled to the longest CRI lead time to achieve the above four targets with the best
sensitivity and specificity (a concept we call Monitoring Parsimony).We will simultaneously iteratively design
and test a graphical user interface (GUI) and clinical decision support system (CDSS) driven by these
parsimoniously derived predictive smart alerts and functional hemodynamic monitoring treatment approaches
in two human simulation environments (PITT & UC Irvine).We envision a basic monitoring surveillance that
identifies patients most likely to develop CRI to apply focused clinician attention and targeted treatments to
deliver highly personalized medical care.
项目摘要/摘要:如果可以准确预测患者何时以及为什么发展
心肺不稳定(CRI),然后可以进行有效的先发制人治疗以改善结果和
更好地使用护理资源。但是,CRI通常无法识别直到确定为止,并且患者是
对治疗的难治性更大,或者发展为器官损伤。我们已经证明了一个集成的监视
从连续无创获的监视参数获得的系统警报,并耦合到护理
算法改善了降级单元(SDU)患者结果。我们还表明了高级人力资源变异性
分析(样品熵)在2分钟内确定了CRI风险的SDU患者,如果监测5分钟
在接下来的48小时内会区分患者或将在接下来的48小时内保持稳定的患者。我们也是
应用机器学习(ML)建模到我们临床上与临床相关的出血性休克猪模型
表征对低血容量,出血和复苏的反应,预测哪些动物会或会
低血症期间不会崩溃,并且比传统监测更早地识别出5分钟的隐匿性出血。
现在,我们建议将我们的工作应用于易受伤害和受侵入性的ICU患者。我们将发展
通过ML数据驱动的分类技术,例如回归,傅立叶和
主要成分分析,人工神经网络,随机森林分类等以及更多新颖
方法(我们的团队开发的时间规则学习;贝叶斯聚集)来预测ICU中的CRI
患者。我们将首先使用我们现有的注释高富达波形模仿II临床数据集(4200
患者)为各种CRI驱动器开发预测模型和差异特征。我们还将使用我们的
高密度数据收集和处理平台(Bernoulli),可前瞻性地从ICU收集三个
机构:大学。匹兹堡(皮特),大学。加利福尼亚州(UC)Irvine和UC圣地亚哥(初始算法
在Pitt进行的开发并在UC系统中进行了验证。我们将确定的数量和类型
独立测量,采样频率和提前时间创建可靠算法的必要时间:1)预测
即将发生的CRI,2)选择最有效的治疗方法,3)监测治疗反应,4)确定何时
治疗恢复了生理稳定性,可以停止。我们还将确定最小的数字
与最长的CRI交货时间相连的参数类型,以最佳实现上述四个目标
敏感性和特异性(我们称之为监控的概念)。我们将同时迭代设计
并测试由这些驱动的图形用户界面(GUI)和临床决策支持系统(CDSS)
衍生的预测性智能警报和功能性血液动力学监测治疗方法
在两个人类的模拟环境中(Pitt&UC Irvine)。
确定最有可能发展CRI的患者以将重点的临床医生注意和针对性的治疗应用于
提供高度个性化的医疗服务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL R PINSKY其他文献
MICHAEL R PINSKY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL R PINSKY', 18)}}的其他基金
Autonomous diagnosis and management of the critically ill during air transport (ADMIT)
航空运输中危重病人的自主诊断和管理(ADMIT)
- 批准号:
9912846 - 财政年份:2019
- 资助金额:
$ 66.25万 - 项目类别:
Autonomous diagnosis and management of the critically ill during air transport (ADMIT)
航空运输中危重病人的自主诊断和管理(ADMIT)
- 批准号:
10359812 - 财政年份:2019
- 资助金额:
$ 66.25万 - 项目类别:
Quantifying Left Ventricular Ejection Effectiveness
量化左心室射血效率
- 批准号:
7142444 - 财政年份:2004
- 资助金额:
$ 66.25万 - 项目类别:
Quantifying Left Ventricular Ejection Effectiveness
量化左心室射血效率
- 批准号:
7280411 - 财政年份:2004
- 资助金额:
$ 66.25万 - 项目类别:
Quantifying Left Ventricular Ejection Effectiveness
量化左心室射血效率
- 批准号:
6821586 - 财政年份:2004
- 资助金额:
$ 66.25万 - 项目类别:
Quantifying Left Ventricular Ejection Effectiveness
量化左心室射血效率
- 批准号:
6937215 - 财政年份:2004
- 资助金额:
$ 66.25万 - 项目类别:
Heart-Lung Interactions & Cardiovascular Insufficiency
心肺相互作用
- 批准号:
6889992 - 财政年份:2002
- 资助金额:
$ 66.25万 - 项目类别:
Heart-Lung Interactions & Cardiovascular Insufficiency
心肺相互作用
- 批准号:
8078075 - 财政年份:2002
- 资助金额:
$ 66.25万 - 项目类别:
Heart-Lung Interactions & Cardiovascular Insufficiency
心肺相互作用
- 批准号:
6620534 - 财政年份:2002
- 资助金额:
$ 66.25万 - 项目类别:
Heart-Lung Interactions & Cardiovascular Insufficiency
心肺相互作用
- 批准号:
6418634 - 财政年份:2002
- 资助金额:
$ 66.25万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
- 批准号:
10678108 - 财政年份:2023
- 资助金额:
$ 66.25万 - 项目类别:
Identifying patient subgroups and processes of care that cause outcome differences following ICU vs. ward triage among patients with acute respiratory failure and sepsis
确定急性呼吸衰竭和脓毒症患者在 ICU 与病房分诊后导致结局差异的患者亚组和护理流程
- 批准号:
10734357 - 财政年份:2023
- 资助金额:
$ 66.25万 - 项目类别:
Predicting ECMO NeuroLogICal Injuries using mAchiNe Learning (PELICAN)
使用机器学习预测 ECMO 神经损伤 (PELICAN)
- 批准号:
10719312 - 财政年份:2023
- 资助金额:
$ 66.25万 - 项目类别:
Transforming Resuscitation through Artificial INtelligence (TRAIN Study)
通过人工智能改变复苏(TRAIN 研究)
- 批准号:
10712407 - 财政年份:2023
- 资助金额:
$ 66.25万 - 项目类别:
PROtecting Maternal brains from Injury and Stroke (PROMIS): a Single-center Phase 2 Clinical Trial
保护母亲大脑免受损伤和中风 (PROMIS):单中心 2 期临床试验
- 批准号:
10575711 - 财政年份:2023
- 资助金额:
$ 66.25万 - 项目类别: