Autonomous diagnosis and management of the critically ill during air transport (ADMIT)

航空运输中危重病人的自主诊断和管理(ADMIT)

基本信息

项目摘要

Project Summary/Abstract: Cardiorespiratory instability (CRI) is common in trauma patients and other acutely ill patients being transferred from trauma sites or between hospital centers. Although paramedics/nurses (PM/RN) have some success in rescuing unstable patients with CRI using defined protocols and decrease incidence of inter-transport severe circulatory shock, the shock recognition tools available and resuscitation endpoints are limited to blood pressure and heart rate thresholds. However, CRI is often unrecognized until it is well established when patients are more refractory to treatment, or progressed to organ injury. If one could accurately predict who, when and why these critically ill patients develop CRI, then effective preemptive treatments could be given to improve care and triage resulting in better use of healthcare resources. We have shown that an integrated monitoring system alert obtained from continuous noninvasively acquired monitoring parameters coupled to a care algorithm improved step-down unit (SDU) patient outcomes. We also applied machine learning (ML) modeling to our clinically-relevant porcine model of hemorrhagic shock to characterize responses to hypovolemia, hemorrhage, and resuscitation, predict which animals would or would not collapse during hypovolemia, and identify occult bleeding 5 minutes earlier than with traditional monitoring. We now propose to apply our work to vulnerable STAT MedEvac air transported patients. We will validate these approaches in our existing >5,000 patient STAT MedEvac database, containing highly granular continuous non-invasive monitoring waveforms of air transported critically ill patients linked to their primary care and inpatient electronic health records (EHR). This level of patient information and granularity linked to treatment data and patient outcomes is unprecedented. We will extend our analysis to include more complex CRI, richer data, deeper analytics, and larger libraries of critically ill patients while in air transport, linking our proven Functional Hemodynamic Monitoring (FHM) principles for pathophysiologic diagnosis and resuscitation with non-invasive monitoring to operationalize personalized resuscitation. We will concurrently running two specific aims. First, we will develop through the Carnegie Melon University Auton Lab multivariable models through ML data-driven classification techniques to predict CRI. We will do this initially on our existing porcine hemorrhagic shock model data (n=60) and then on our STAT MedEvac dataset linked to EHR (n >5,000 patients), determining the minimal data (measures, sampling frequency, observation duration) required to robustly identify deviation from health, likely CRI cause, and response to treatment (endpoint of resuscitation), as well as the incremental benefit of additional variables, analysis, lead-time and sampling frequency to predict CRI and response to treatment, and examine the trade-offs between model parsimony and specificity. Second, we will evaluate our existing clinical decision support (CDS) tools to interface with FHM principles and ML- defined interactions, and trial this in silico first on our porcine hemorrhagic shock resuscitation, then on our STAT MedEvac data, followed by prospective human simulation on flight crew PM/RN (n=160) during annual training for agreement and benefit, defining effectiveness based on diagnosis accuracy, time to diagnosis, intervention choice accuracy and time to intervention. This iterative process will modify the existing CDS platform into one more specifically suited for air transport scenarios. Finally, we will evaluate the resultant semi-autonomous management protocol initially in retrospect in 100 STAT MedEvac patients and 10 Emergency Department trauma patients and then prospectively by active CDS in a final 100 STAT MedEvac patients. We will prospectively analyze the effectiveness of these calibrated CDS tools for predictive ability of the various ML models and apply the best, most practical and parsimonious predictive models for clinical care during transport based on patient population, pathological processes and support staff.
项目摘要/摘要:心肺不稳定 (CRI) 在创伤患者和其他患者中很常见 从创伤地点或医院中心之间转移的急症患者。虽然 护理人员/护士 (PM/RN) 使用定义的方法在抢救不稳定的 CRI 患者方面取得了一些成功 协议并减少转运间严重循环休克的发生率,休克识别工具 可用的复苏终点仅限于血压和心率阈值。然而,CRI 通常在患者对治疗更加难治或进展到病情明确时才被识别出来 器官损伤。如果能够准确预测这些危重患者是谁、何时以及为什么会出现 CRI,那么 可以采取有效的预防性治疗来改善护理和分诊,从而更好地利用医疗保健 资源。我们已经证明,通过连续的无创性监测获得的综合监测系统警报 获得的监测参数与护理算法相结合,改善了降压单元(SDU)患者的治疗效果。 我们还将机器学习 (ML) 建模应用于临床相关的失血性休克猪模型 描述对低血容量、出血和复苏的反应,预测哪些动物会或 低血容量时不会崩溃,比传统方法提前 5 分钟识别隐匿性出血 监控。我们现在建议将我们的工作应用于易受伤害的 STAT MedEvac 空运患者。我们将 在我们现有的超过 5,000 名患者 STAT MedEvac 数据库中验证这些方法,其中包含高度精细的数据 对空运的危重患者与其主要疾病相关的连续无创监测波形 护理和住院患者电子健康记录 (EHR)。这种级别的患者信息和粒度与 治疗数据和患者结果是前所未有的。我们将扩展我们的分析以包括更复杂的 CRI、更丰富的数据、更深入的分析以及航空运输中更大的危重患者库,将我们的 用于病理生理诊断和复苏的功能性血流动力学监测 (FHM) 原理已得到验证 通过无创监测来实施个性化复苏。我们将同时运行两个 具体目标。首先,我们将通过卡内基梅隆大学Auton Lab开发多变量模型 通过 ML 数据驱动的分类技术来预测 CRI。我们首先将在现有的猪身上进行此操作 失血性休克模型数据 (n=60),然后是链接到 EHR 的 STAT MedEvac 数据集 (n >5,000 患者),确定所需的最少数据(测量、采样频率、观察持续时间) 稳健地识别健康偏差、可能的 CRI 原因以及对治疗的反应(复苏终点), 以及额外的变量、分析、交付时间和采样频率来预测的增量效益 CRI 和治疗反应,并检查模型简约性和特异性之间的权衡。第二, 我们将评估我们现有的临床决策支持 (CDS) 工具,以与 FHM 原则和 ML 相结合 定义的相互作用,并首先在我们的猪失血性休克复苏中进行计算机试验,然后在我们的 STAT MedEvac 数据,然后在年度期间对飞行机组 PM/RN (n=160) 进行前瞻性人体模拟 培训以达成一致和利益,根据诊断准确性、诊断时间定义有效性, 干预选择的准确性和干预时间。这个迭代过程将修改现有的CDS 平台成为一个更适合航空运输场景的平台。最后,我们将评估结果 半自主管理方案最初在 100 名 STAT MedEvac 患者和 10 名患者中进行回顾 急诊科创伤患者,然后在最后 100 名 STAT MedEvac 中前瞻性地接受主动 CDS 患者。我们将前瞻性地分析这些经过校准的 CDS 工具的预测能力的有效性 各种机器学习模型,并将最好、最实用、最简约的预测模型应用于临床护理 在运输过程中,根据患者人数、病理过程和支持人员而定。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Severity-Driven Trends in Mortality in a Large Regionalized Critical Care Transport Service.
大型区域化重症监护运输服务中由严重程度驱动的死亡率趋势。
  • DOI:
    10.1016/j.amj.2023.11.004
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Salcido,DavidD;Zikmund,ChaseW;Weiss,LeonardS;Schoenling,Andrew;Martin-Gill,Christian;Guyette,FrancisX;Pinsky,MichaelR
  • 通讯作者:
    Pinsky,MichaelR
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL R PINSKY其他文献

MICHAEL R PINSKY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL R PINSKY', 18)}}的其他基金

Autonomous diagnosis and management of the critically ill during air transport (ADMIT)
航空运输中危重病人的自主诊断和管理(ADMIT)
  • 批准号:
    9912846
  • 财政年份:
    2019
  • 资助金额:
    $ 71.22万
  • 项目类别:
Machine learning of physiological variables to predict diagnose and treat cardiorespiratory instability
机器学习生理变量来预测诊断和治疗心肺不稳定
  • 批准号:
    9029396
  • 财政年份:
    2016
  • 资助金额:
    $ 71.22万
  • 项目类别:
Quantifying Left Ventricular Ejection Effectiveness
量化左心室射血效率
  • 批准号:
    7142444
  • 财政年份:
    2004
  • 资助金额:
    $ 71.22万
  • 项目类别:
Quantifying Left Ventricular Ejection Effectiveness
量化左心室射血效率
  • 批准号:
    7280411
  • 财政年份:
    2004
  • 资助金额:
    $ 71.22万
  • 项目类别:
Quantifying Left Ventricular Ejection Effectiveness
量化左心室射血效率
  • 批准号:
    6821586
  • 财政年份:
    2004
  • 资助金额:
    $ 71.22万
  • 项目类别:
Quantifying Left Ventricular Ejection Effectiveness
量化左心室射血效率
  • 批准号:
    6937215
  • 财政年份:
    2004
  • 资助金额:
    $ 71.22万
  • 项目类别:
Heart-Lung Interactions & Cardiovascular Insufficiency
心肺相互作用
  • 批准号:
    6889992
  • 财政年份:
    2002
  • 资助金额:
    $ 71.22万
  • 项目类别:
Heart-Lung Interactions & Cardiovascular Insufficiency
心肺相互作用
  • 批准号:
    8078075
  • 财政年份:
    2002
  • 资助金额:
    $ 71.22万
  • 项目类别:
Heart-Lung Interactions & Cardiovascular Insufficiency
心肺相互作用
  • 批准号:
    6620534
  • 财政年份:
    2002
  • 资助金额:
    $ 71.22万
  • 项目类别:
Heart-Lung Interactions & Cardiovascular Insufficiency
心肺相互作用
  • 批准号:
    6418634
  • 财政年份:
    2002
  • 资助金额:
    $ 71.22万
  • 项目类别:

相似国自然基金

Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
  • 批准号:
    82300764
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
活性脂质Arlm-1介导的自噬流阻滞在儿童T细胞急性淋巴细胞白血病化疗耐药逆转中的作用机制研究
  • 批准号:
    82300182
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
  • 批准号:
    82370165
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
  • 批准号:
    82300697
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
  • 批准号:
    82370175
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Treat-to-Target Serum Urate versus Treat-to-Avoid Symptoms in Gout: A Randomized Controlled Trial (TRUST)
治疗痛风目标血清尿酸与治疗避免症状:随机对照试验 (TRUST)
  • 批准号:
    10583217
  • 财政年份:
    2023
  • 资助金额:
    $ 71.22万
  • 项目类别:
Using Small Area Variation Analysis to Investigate Sources of Practice Variation for Febrile Infants at Risk for Invasive Bacterial Infections
使用小面积变异分析来调查有侵袭性细菌感染风险的发热婴儿的实践变异来源
  • 批准号:
    10588846
  • 财政年份:
    2023
  • 资助金额:
    $ 71.22万
  • 项目类别:
Actionable categories of avoidable hospital care among adults with cancer
成人癌症患者可避免住院治疗的可行类别
  • 批准号:
    10714125
  • 财政年份:
    2023
  • 资助金额:
    $ 71.22万
  • 项目类别:
Clinical Decision Support for Assessing Pulmonary Embolism using Machine Learning
使用机器学习评估肺栓塞的临床决策支持
  • 批准号:
    10381875
  • 财政年份:
    2022
  • 资助金额:
    $ 71.22万
  • 项目类别:
SIREN Administrative Supplement
SIRN 行政补充
  • 批准号:
    10625116
  • 财政年份:
    2022
  • 资助金额:
    $ 71.22万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了