Translating The Individualized Functional Connectome To Surgical Planning
将个性化功能连接组转化为手术计划
基本信息
- 批准号:9052847
- 负责人:
- 金额:$ 44.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyAreaAtlasesBrainCharacteristicsClinicalDevelopmentFunctional Magnetic Resonance ImagingGoalsHandednessHealthHumanImageImaging technologyIndividualLaboratoriesLanguageLanguage DisordersLearningMapsMethodsNeurologicNeurosurgical ProceduresNoiseOperative Surgical ProceduresPatientsPopulationPostoperative PeriodReproducibilityResearchRestRiskSeriesSignal TransductionTechnologyTestingTranslatingUnited States National Institutes of HealthValidationbaseclinical applicationcognitive functioncohortconnectomedesignimprovedindividualized medicineinnovationnovel strategiesresponsetooltreatment planning
项目摘要
DESCRIPTION (provided by applicant): Localization of brain function is important to minimize functional deficits after neurosurgical procedures. A long-standing goal has been to obtain this information pre-operatively to better predict risk and plan the surgical approach. Although many non-invasive tools are available, fMRI has seen the greatest clinical use. Unfortunately, pre-operative mapping with fMRI suffers from poor signal to noise ratio (SNR) and test-retest reliability at the single-subject level, and the resulting maps are not always consistent with the findings of invasive electrical cortical stimulation (ECS), causing many to question its clinical utility. Recently, our laboratory and others have made major advances that may help address these limitations. Many of these advances have focused on connectivity imaging based on spontaneous activity, catalyzed in part by the NIH Human Connectome Project (HCP). These technical innovations and theoretical advancements are now ripe for being translated to individual clinical patients, but require optimization and validation. The goal of this project is o translate cutting-edge connectivity-based imaging technology to the clinical arena by developing and validating a set of functional mapping tools that can provide individual-level precision and guide surgical intervention. Specifically, we will develop and validate a connectivity-based parcellation technology that can localize functional networks in individual subjects, including in patients with altered brain anatomy. Second, we will develop and validate a connectivity-based method to quantify the lateralization of important cognitive functions and overcome the influence of anatomical asymmetry. Finally, we propose a strategy to improve mapping accuracy when patients are able to perform tasks by flexibly combining the information obtained from spontaneous connectivity and task-evoked responses. This strategy will allow us to leverage the lessons learned from 20 years of exploration using task fMRI and recent revolutionary advancements in connectivity research. The successful completion of this project will greatly improve the clinical value of fMRI in surgical planning, as well as in a wide range of clinical applications. The project will offer a set of comprehensive and extensively tested functional mapping tools suitable for the study of individual subjects with greater sensitivity and reliabilit than are currently available. This increase in mapping precision will directly translate into an enhanced ability to a) predict and reduce postoperative functional deficits, as well as to b) design individualized treatment plans for many neurological and psychiatric patients.
描述(通过应用程序提供):大脑功能的定位对于在神经外科手术后最小化功能缺陷很重要。一个长期的目标是在术前获得此信息,以更好地预测风险并计划手术方法。尽管有许多非侵入性工具可用,但fMRI已经看到了最大的临床用途。不幸的是,使用fMRI的术前映射遭受较差的信号与噪声比(SNR)(SNR)和在单个受试者水平上的测试可靠性,以及由此产生的地图并不总是与侵入性电气皮层刺激(EC)的发现一致,从而导致许多人质疑其临床实用性。最近,我们的实验室和其他人取得了重大进展,可以帮助解决这些局限性。这些进步中的许多进步都集中在基于赞助活动的连通性成像上,部分由NIH人类连接项目(HCP)催化。这些技术创新和理论进步现在已经成熟,可以转化为个别临床患者,但需要优化和验证。该项目的目的是通过开发和验证一组功能映射工具,将基于尖端连接的成像技术转换为临床领域,这些功能映射工具可以提供个人级别的精度和指导手术干预。具体而言,我们将开发并验证一种基于连通性的分割技术,该技术可以在各个受试者中定位功能网络,包括在大脑解剖结构改变的患者中。其次,我们将开发并验证一种基于连通性的方法来量化重要的认知功能的横向化并克服解剖学不对称的影响。最后,当患者能够通过灵活地组合从赞助连通性和任务引起的响应中获得的信息来执行任务时,我们提出了一种提高映射准确性的策略。该策略将使我们能够利用fMRI和最近的连通性研究革命进步从20年的探索中学到的经验教训。该项目的成功完成将大大提高fMRI在手术计划中以及广泛的临床应用中的临床价值。该项目将提供一组全面测试的功能映射工具,适用于与目前可用的更高敏感性和可靠性研究的单个受试者。映射精度的这种增加将直接转化为增强的能力,以a)预测和减少潜在的功能性缺陷,以及b)为许多神经系统和精神病患者设计个性化的治疗计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hesheng Liu其他文献
Hesheng Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hesheng Liu', 18)}}的其他基金
Cerebro-cerebellar circuitry in the pathophysiology of auditory hallucinations: dysmetria of auditory perceptual processing?
幻听病理生理学中的脑小脑回路:听觉感知处理的辨距障碍?
- 批准号:
10015346 - 财政年份:2019
- 资助金额:
$ 44.77万 - 项目类别:
Translating The Individualized Functional Connectome To Surgical Planning
将个性化功能连接组转化为手术计划
- 批准号:
9896506 - 财政年份:2019
- 资助金额:
$ 44.77万 - 项目类别:
Translating The Individualized Functional Connectome To Surgical Planning
将个性化功能连接组转化为手术计划
- 批准号:
9252600 - 财政年份:2015
- 资助金额:
$ 44.77万 - 项目类别:
Task-free Presurgical Evaluation of Lateral, Eloquent Cortex & Epileptic Foci
外侧口才皮层的无任务术前评估
- 批准号:
8624715 - 财政年份:2011
- 资助金额:
$ 44.77万 - 项目类别:
Task-free Presurgical Evaluation of Lateral, Eloquent Cortex & Epileptic Foci
外侧口才皮层的无任务术前评估
- 批准号:
8043885 - 财政年份:2011
- 资助金额:
$ 44.77万 - 项目类别:
Task-free Presurgical Evaluation of Lateral, Eloquent Cortex & Epileptic Foci
外侧口才皮层的无任务术前评估
- 批准号:
8233306 - 财政年份:2011
- 资助金额:
$ 44.77万 - 项目类别:
Task-free Presurgical Evaluation of Lateral, Eloquent Cortex & Epileptic Foci
外侧口才皮层的无任务术前评估
- 批准号:
8441549 - 财政年份:2011
- 资助金额:
$ 44.77万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 44.77万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 44.77万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 44.77万 - 项目类别:
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 44.77万 - 项目类别:
Quantitative imaging of choroid plexus function and neurofluid circulation in Alzheimer's Disease Related Dementia
阿尔茨海默病相关痴呆症脉络丛功能和神经液循环的定量成像
- 批准号:
10718346 - 财政年份:2023
- 资助金额:
$ 44.77万 - 项目类别: