Merging machine learning and mechanistic models to improve prediction and inference in emerging epidemics
融合机器学习和机械模型以改进对新兴流行病的预测和推理
基本信息
- 批准号:10709474
- 负责人:
- 金额:$ 45.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AfricanAlgorithmsAreaCOVID-19COVID-19 pandemicCholeraCholera VaccineCommunicable DiseasesCommunity HealthDataData SetDecision AnalysisDecision MakingDecision TheoryDiseaseDisease OutbreaksEbolaEmerging Communicable DiseasesEnsureEpidemicEvaluationFogsFutureGeographic LocationsIncidenceInternationalInterventionKnowledgeLiberiaLifeLinkLocationMachine LearningMethodsModelingMorbidity - disease rateOnline SystemsOralPoliciesPublic HealthResearchResearch PersonnelSeriesShapesStatistical AlgorithmStatistical MethodsStatistical ModelsSystemTimeTranslatingUpdateWarWorkYemencase-basedcostcurve fittingdashboarddisease transmissionepidemic responseexperienceflexibilityimprovedinnovationmortalitymultidimensional datanew epidemicoutbreak responseprogramsprospectiveresponsesimulationsoundsurveillance datatheoriestooltransmission processuser-friendly
项目摘要
PROJECT SUMMARY
When an outbreak of an established or emerging infectious disease occurs we ask a standard set of questions
that are critical to a lifesaving public health response: Where will future incidence occur? How many cases will
there be? And where can we most effectively intervene? The proposed research is motivated by real world
instances where answering these questions was critical to making practical public health decisions, and current
methods came up short: from deciding if and where to build additional Ebola Treatment Units in the 2014-15
West African Ebola epidemic, to identifying priority districts where oral cholera vaccine should be used in the
2016-17 cholera outbreak in Yemen, to picking locations where sufficient cases might occur to selecting and
prioritizing interventions to slow the spread of COVID-19 worldwide. Forecasts informing such decisions are
typically generated either using an epidemic model that relies on knowledge of the disease transmission
mechanism and epidemic theory or using a statistical model to project the expected number of cases based on
the relationship between covariates and observed counts. However, both approaches are subject to limitations,
particularly early in an epidemic when few cases are observed. This project is based on the overarching
scientific premise that inferences that combine the strengths of mechanistic epidemic models and statistical
covariate models will substantially outperform either approach alone in forecasting and making decisions to
confront emerging infectious disease threats. Specifically, this project aims to (1) Develop a framework to
forecast incidence in ongoing outbreaks that merges mechanistic and machine learning approaches;
(2) Validate the framework using retrospective data and apply the framework to inform decision making
in emerging epidemics; (3) Integrate this inferential forecasting framework into causal decision theory
to optimize critical actions in the public health response to emerging epidemics; and (4) Develop
accessible and extensible tools for forecasting and decision analysis in infectious disease epidemics.
We will validate these approaches using rigorous simulation studies and by applying the proposed approaches
to retrospective data from important recent epidemics (e.g., Ebola, Cholera and COVID-19, as mentioned
above). We will prospectively apply our approach to inform the response to emerging disease threats that
occur during the project period, including the ongoing COVID-19 pandemic. To ensure that the tools developed
are useful, efficient, and user friendly, we will work with international humanitarian organizations responding to
epidemics. Successful completion of these aims will provide a flexible and validated framework for forecasting
and decision making during ongoing epidemics, while allowing for innovation in mechanistic and statistical
approaches. In doing so it will provide tools to optimize responses and reduce morbidity and mortality during
public health crises.
项目概要
当已发生或新出现的传染病爆发时,我们会提出一组标准问题
对于挽救生命的公共卫生应对措施至关重要:未来的发病率将在哪里发生?会有多少个案例
有吗?我们可以在哪里进行最有效的干预?拟议的研究是由现实世界推动的
回答这些问题对于做出实际的公共卫生决策至关重要的实例,以及当前
方法不足:决定 2014-15 年是否以及在哪里建造更多埃博拉治疗单位
西非埃博拉疫情,以确定在该地区应使用口服霍乱疫苗的优先地区
2016-17 也门爆发霍乱,挑选可能发生足够病例的地点
优先采取干预措施以减缓 COVID-19 在全球范围内的传播。为此类决策提供信息的预测是
通常使用依赖于疾病传播知识的流行病模型生成
机制和流行病理论或使用统计模型来预测预期病例数
协变量和观察到的计数之间的关系。然而,这两种方法都受到限制,
特别是在流行病早期,观察到的病例很少。该项目基于总体
结合机械流行病模型和统计优势的推论的科学前提
协变量模型在预测和决策方面将大大优于单独的任何一种方法
应对新出现的传染病威胁。具体而言,该项目旨在 (1) 开发一个框架
结合机械和机器学习方法来预测持续爆发的发病率;
(2) 使用回顾性数据验证框架并应用该框架为决策提供信息
在新出现的流行病中; (3) 将这个推理预测框架融入因果决策理论
优化公共卫生应对新出现流行病的关键行动; (4) 开发
用于传染病流行预测和决策分析的可访问且可扩展的工具。
我们将通过严格的模拟研究并应用所提出的方法来验证这些方法
最近重要流行病(例如埃博拉、霍乱和 COVID-19,如上所述)的回顾性数据
多于)。我们将前瞻性地运用我们的方法来应对新出现的疾病威胁
发生在项目期间,包括正在进行的 COVID-19 大流行。确保所开发的工具
有用、高效且用户友好,我们将与国际人道主义组织合作应对
流行病。成功完成这些目标将为预测提供灵活且经过验证的框架
流行病持续期间的决策和决策,同时允许机械和统计方面的创新
接近。在此过程中,它将提供优化应对措施并降低发病率和死亡率的工具。
公共卫生危机。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessie Edwards其他文献
Jessie Edwards的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessie Edwards', 18)}}的其他基金
Merging machine learning and mechanistic models to improve prediction and inference in emerging epidemics
融合机器学习和机械模型以改进对新兴流行病的预测和推理
- 批准号:
10539401 - 财政年份:2021
- 资助金额:
$ 45.9万 - 项目类别:
Merging machine learning and mechanistic models to improve prediction and inference in emerging epidemics
融合机器学习和机械模型以改进对新兴流行病的预测和推理
- 批准号:
10334519 - 财政年份:2021
- 资助金额:
$ 45.9万 - 项目类别:
Comparative effectiveness of tailored HIV treatment plans and mortality
定制的艾滋病毒治疗计划和死亡率的比较效果
- 批准号:
9270331 - 财政年份:2016
- 资助金额:
$ 45.9万 - 项目类别:
Comparative effectiveness of tailored HIV treatment plans and mortality
定制的艾滋病毒治疗计划和死亡率的比较效果
- 批准号:
10062470 - 财政年份:2016
- 资助金额:
$ 45.9万 - 项目类别:
相似国自然基金
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
集装箱港口装卸运输区域基于碳配额碳交易的运营优化模型和算法研究
- 批准号:72271152
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
相似海外基金
Incorporating residential histories into assessment of cancer risk in a predominantly low-income and racially diverse population
将居住史纳入以低收入和种族多元化为主的人群的癌症风险评估中
- 批准号:
10735164 - 财政年份:2023
- 资助金额:
$ 45.9万 - 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:
10667903 - 财政年份:2023
- 资助金额:
$ 45.9万 - 项目类别:
A mobile health framework for left ventricular end diastolic pressure diagnostics and monitoring.
用于左心室舒张末压诊断和监测的移动健康框架。
- 批准号:
10601929 - 财政年份:2023
- 资助金额:
$ 45.9万 - 项目类别:
Artificial Intelligence and Counterfactually Actionable Responses to End HIV (AI-CARE-HIV)
人工智能和反事实可行的终结艾滋病毒应对措施 (AI-CARE-HIV)
- 批准号:
10699171 - 财政年份:2023
- 资助金额:
$ 45.9万 - 项目类别:
Leveraging artificial intelligence/machine learning-based technology to overcome specialized training and technology barriers for the diagnosis and prognostication of colorectal cancer in Africa
利用基于人工智能/机器学习的技术克服非洲结直肠癌诊断和预测的专业培训和技术障碍
- 批准号:
10712793 - 财政年份:2023
- 资助金额:
$ 45.9万 - 项目类别: