Artificial Intelligence and Counterfactually Actionable Responses to End HIV (AI-CARE-HIV)
人工智能和反事实可行的终结艾滋病毒应对措施 (AI-CARE-HIV)
基本信息
- 批准号:10699171
- 负责人:
- 金额:$ 73.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-25 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdherenceAffectAfrican American populationAlgorithmsAreaArtificial IntelligenceBehavioralBlack raceCalibrationCaringClinicalClinical ResearchCohort StudiesComplexCoupledDataData SourcesDatabasesDisparityElectronic Health RecordEpidemiologyExpert SystemsFailureFloridaFocus GroupsGoalsHIVHealthHealth BenefitHealth PersonnelHealth Services AccessibilityHigh PrevalenceImmunologicsIncidenceIndividualInfrastructureInterventionInterviewLinkMeasurementMethodologyMethodsMinorityModelingNatural Language ProcessingOutcomePatientsPersonsPopulationPrecision HealthProtocols documentationProviderPublic HealthQuality of lifeRaceRecording of previous eventsResistanceRiskRisk ReductionSamplingStandardizationStructureSurveysTestingViral Load resultVirus DiseasesWorkantiretroviral therapyartificial intelligence methodcare outcomescitizen sciencecohortcomorbiditydata integrationdeep learningdeprivationdisparity reductionelectronic structureexperiencehealth determinantshealth equityhigh riskimmune reconstitutionimplementation scienceimprovedinstrumentintervention effectmeetingsmultidisciplinarynoveloutcome disparitiespre-exposure prophylaxispredictive modelingprivacy preservationprogramsprospectivepublic health interventionpublic health relevanceracial disparityresponsesocialsocial disparitiessocial health determinantssocial stigmasociodemographic factorsstatisticstherapy adherencetherapy designtherapy outcomeuptakeusability
项目摘要
ABSTRACT
Florida has the highest incidence of Human Immunodeficiency Virus (HIV) infections in the US, with marked
social and racial disparities. About 40% of people with HIV in Florida do not reach undetectable viral load, and
Black African Americans are the most affected. Besides well-known sociodemographic factors contributing to
unfavorable outcomes and disparities, part of such remains unexplained and cannot be actioned upon. Advances
in artificial intelligence (AI) and increasing availability of large real-world data (RWD) databases, e.g., electronic
health records (EHRs) and administrative claims data, are ideal for developing models for precision health.
However, the full capabilities of AI are still hampered by the fact that EHRs are not well integrated with other
relevant data sources, containing information on social and behavioral determinants of health (SDoH), especially
important for HIV care access and outcomes. Further, a strong determinant of HIV outcomes is stigma, which is
not captured in structured fields of EHRs, but can be identified in clinical notes via natural language processing.
In fact, many other contextual- and individual-level SDoH can be extracted from clinical narratives in EHRs.
Another critical problem with AI built on RWD is that, due to inherent bias in observational data like EHRs, the
AI models might identify wrong effects for interventions. Thus, alternative predictions (i.e., counterfactuals) of
naïve AI systems might be mistaken, potentially leading to harm. Causal inference methods are being
increasingly coupled with AI to address such bias. The overarching goal of this project is to develop “AI-CARE-
HIV,” an actionable counterfactual RWD AI framework to improve HIV outcomes in Florida, in particular
reducing disparity through addressing SDoH. We hypothesize that a portion of the unexplained systemic
disparity can be elucidated by combining causal inference and AI models that exploit complex interactions
between individual- and contextual-level SDoH. This framework can then be used to develop an unbiased (under
certain assumptions), actionable model usable for planning and implementing clinical and public health
interventions. We will develop the project through the OneFlorida+ Clinical Research Consortium, which collates
RWD data from >16.8M Floridians, and specifically the OneFlorida+ HIV cohort (now N=71,363). Our project
aims to: (1) Enhance the cohort by incorporating large-scale SDoH (9,000+) and prospectively validate new
SDoH, including stigma, using NLP; (2) Create polysocial risk scores from SDoH, identify population-level causal
effects of SDOH-conditioned interventions on to HIV outcomes, and develop individualized counterfactual AI
models for HIV outcomes, calibrated to reduce disparity; (3) Plan –with healthcare providers, State officials,
citizen scientists– targeted clinical and public health interventions anchored on our counterfactual AI models,
using implementation science, standardized protocols (e.g., CONSORT-AI). Our team includes multidisciplinary
(methodological, clinical, qualitative) expertise supported by OneFlorida+, Fl Dept of Health, and minority-
serving entities. We expect impact at multiple levels, from infrastructure enhancement to public health benefit.
抽象的
佛罗里达州是美国人类免疫缺陷病毒 (HIV) 感染发病率最高的州,
佛罗里达州约 40% 的艾滋病毒感染者没有达到不可检测的病毒载量,并且
除了众所周知的社会人口因素外,非裔美国人受影响最大。
不利的结果和差异,其中部分仍无法解释,无法采取行动。
人工智能(AI)和增加大型现实世界数据(RWD)数据库的可用性,例如电子
健康记录 (EHR) 和行政索赔数据是开发精准健康模型的理想选择。
然而,人工智能的全部功能仍然受到电子病历与其他系统没有很好集成的阻碍。
相关数据源,包含有关健康的社会和行为决定因素(SDoH)的信息,特别是
此外,艾滋病毒治疗结果的一个重要决定因素是耻辱感。
未在电子病历的结构化字段中捕获,但可以通过自然语言处理在临床记录中识别。
事实上,许多其他背景和个人层面的 SDoH 可以从 EHR 的临床叙述中提取。
基于 RWD 的人工智能的另一个关键问题是,由于 EHR 等观察数据的固有偏差,
人工智能模型可能会识别出干预措施的错误效果,从而产生替代预测(即反事实)。
幼稚的人工智能系统可能会出错,从而可能导致因果推理方法受到损害。
越来越多地与人工智能结合来解决这种偏见该项目的总体目标是开发“AI-CARE-”。
HIV”,一个可操作的反事实 RWD AI 框架,旨在改善佛罗里达州的艾滋病毒结果,特别是
通过解决 SDoH 问题来减少差距。
可以通过结合因果推理和利用复杂交互的人工智能模型来阐明差异
然后,该框架可用于开发一个公正的(根据)
某些假设),可用于规划和实施临床和公共卫生的可行模型
我们将通过 OneFlorida+ 临床研究联盟开发该项目,该联盟负责整理。
RWD 数据来自超过 1680 万佛罗里达人,特别是 OneFlorida+ HIV 队列(现在 N=71,363)。
旨在:(1) 通过纳入大规模 SDoH(9,000+)来增强队列并前瞻性地验证新的
(2) 从 SDoH 创建多社会风险评分,确定人群层面的因果关系
SDOH 条件干预措施对 HIV 结果的影响,并开发个性化的反事实人工智能
艾滋病毒结果模型,经过校准以减少差异;(3) 与医疗保健提供者、国家官员一起制定计划;
公民科学家——基于我们的反事实人工智能模型的有针对性的临床和公共卫生干预措施,
使用实施科学、标准化协议(例如 CONSORT-AI)。我们的团队包括多学科人员。
由 OneFlorida+、佛罗里达州卫生部和少数群体支持的(方法学、临床、定性)专业知识
我们预计会在多个层面产生影响,从基础设施增强到公共卫生效益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiang Bian其他文献
Jiang Bian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiang Bian', 18)}}的其他基金
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
- 批准号:
10753675 - 财政年份:2023
- 资助金额:
$ 73.14万 - 项目类别:
Eligibility criteria design for Alzheimer's trials with real-world data and explainable AI
利用真实数据和可解释的人工智能设计阿尔茨海默病试验的资格标准
- 批准号:
10608470 - 财政年份:2023
- 资助金额:
$ 73.14万 - 项目类别:
AI-ADRD: Accelerating interventions of AD/ADRD via Machine learning methods
AI-ADRD:通过机器学习方法加速 AD/ADRD 干预
- 批准号:
10682237 - 财政年份:2023
- 资助金额:
$ 73.14万 - 项目类别:
An end-to-end informatics framework to study Multiple Chronic Conditions (MCC)'s impact on Alzheimer's disease using harmonized electronic health records
使用统一的电子健康记录研究多种慢性病 (MCC) 对阿尔茨海默病的影响的端到端信息学框架
- 批准号:
10728800 - 财政年份:2023
- 资助金额:
$ 73.14万 - 项目类别:
Disparities of Alzheimer's disease progression in sexual and gender minorities
性少数群体中阿尔茨海默病进展的差异
- 批准号:
10590413 - 财政年份:2023
- 资助金额:
$ 73.14万 - 项目类别:
Post-Acute Sequelae of SARS-CoV-2 Infection and Subsequent Disease Progression in Individuals with AD/ADRD: Influence of the Social and Environmental Determinants of Health
AD/ADRD 患者 SARS-CoV-2 感染的急性后遗症和随后的疾病进展:健康的社会和环境决定因素的影响
- 批准号:
10751275 - 财政年份:2023
- 资助金额:
$ 73.14万 - 项目类别:
Advancing Precision Lung Cancer Surveillance and Outcomes in Diverse Populations (PLuS2)
推进不同人群的精准肺癌监测和结果 (PLuS2)
- 批准号:
10752848 - 财政年份:2023
- 资助金额:
$ 73.14万 - 项目类别:
PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
- 批准号:
10368562 - 财政年份:2022
- 资助金额:
$ 73.14万 - 项目类别:
PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
- 批准号:
10677539 - 财政年份:2022
- 资助金额:
$ 73.14万 - 项目类别:
PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
- 批准号:
10677539 - 财政年份:2022
- 资助金额:
$ 73.14万 - 项目类别:
相似国自然基金
基于前景理论的ADHD用药决策过程与用药依从性内在机制研究
- 批准号:72304279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于强化学习AI聊天机器人对MSM开展PrEP服药依从性精准干预模式探索及干预效果研究
- 批准号:82373638
- 批准年份:2023
- 资助金额:59 万元
- 项目类别:面上项目
基于HAPA理论的PCI术后患者运动依从性驱动机制与干预方案构建研究
- 批准号:72304180
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于保护动机理论的新确诊青少年HIV感染者抗病毒治疗依从性“游戏+”健康教育及作用机制研究
- 批准号:82304256
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于健康行为程式模型提升高血压患者药物依从性的干预策略构建研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Identifying and testing a tailored strategy to achieve equity in blood pressure control in PACT
确定并测试量身定制的策略,以在 PACT 中实现血压控制的公平性
- 批准号:
10538513 - 财政年份:2023
- 资助金额:
$ 73.14万 - 项目类别:
Social Vulnerability, Sleep, and Early Hypertension Risk in Younger Adults
年轻人的社会脆弱性、睡眠和早期高血压风险
- 批准号:
10643145 - 财政年份:2023
- 资助金额:
$ 73.14万 - 项目类别:
An Integrated Catheter Dressing for Early Detection of Catheter-related Bloodstream Infections
用于早期检测导管相关血流感染的集成导管敷料
- 批准号:
10647072 - 财政年份:2023
- 资助金额:
$ 73.14万 - 项目类别:
Adaptation of a Digital Health Intervention for Chronic Condition Related fatigue to the Latino population
针对拉丁裔人群慢性病相关疲劳的数字健康干预措施的适应
- 批准号:
10697435 - 财政年份:2023
- 资助金额:
$ 73.14万 - 项目类别: