Multiplexed imaging of viral protein processing and assembly in live cells
活细胞中病毒蛋白加工和组装的多重成像
基本信息
- 批准号:10708987
- 负责人:
- 金额:$ 47.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-21 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAffinityAlphavirusAntibodiesBindingBiochemistryBiogenesisBiological ProcessBiologyCapsidCapsid ProteinsCellsChimera organismChimeric ProteinsColorCommunitiesComplexComputersConsumptionDarknessDataDevelopmentDirected Molecular EvolutionEngineeringEnsureEpitopesEukaryotic CellFlavivirusGenetic MaterialsGenetic RecombinationGenomeHIV-1HandHomoHypersensitivityImageImaging DeviceImaging technologyImmunoglobulin FragmentsInfectionInvestigationKineticsLabelLeadLibrariesLifeLife Cycle StagesLightMachine LearningMechanicsMembraneMethodsMicroscopyModelingMolecularMolecular BiologyMolecular VirologyMonitorPeptidesPhotobleachingPolyproteinsPositioning AttributePredispositionProcessProtein DynamicsProtein EngineeringProtein FragmentProteinsReagentRecombinant ProteinsRefractoryReplication-Associated ProcessResearchResearch PersonnelRibosomesScientistSignal TransductionSpecificityTechnologyTestingTimeTranslationsValidationVariantViralViral ProteinsVirusVirus DiseasesVirus ReplicationVisualizationantibody mimeticscostdesignexperimental studyin vivoin vivo imaginginnovationlive cell imaginglive cell microscopymolecular dynamicsmolecular imagingmultiplexed imagingnext generationnon-invasive imagingnovelparticleprediction algorithmprotein structureprotein structure predictionrational designreal-time imagesscaffoldsingle moleculespatiotemporalsuccesstemporal measurementvirology
项目摘要
Imaging the full lifecycle of viral proteins in vivo is essential for understanding the molecular
processes underlying viral infection. Live-cell imaging has long been performed using
fluorescent protein fusion tags such as GFP. However, these tags can alter the size and
function of targeted proteins. Furthermore, slow maturation, degradation, and photobleaching of
tags results in the loss of signal, making it difficult to track the early life and ultimate fate of
many proteins. Viral polyproteins, in particular, remain refractory to imaging in vivo due to their
hypersensitivity to tags and the extensive processing and assembly they undergo during viral
biogenesis. The use of linear epitope tags reversibly labeled by genetically encoded live-cell
probes can solve many of these issues. Unfortunately, engineering functional probes for live-cell
imaging of epitopes has been costly and time-consuming. In the proposed research, we
combine expertise in protein engineering, single-molecule microscopy, and biochemistry to
refine and accelerate the rational design of orthogonal epitope/probe pairs for highly multiplexed
imaging of full viral protein lifecycles in living cells. We demonstrate the power of our strategy in
our Preliminary Data by creating novel scFvs that bind the commonly used HA and Flag
epitopes with high affinity in a variety of demanding live-cell imaging scenarios. In Aim 1, we will
use our tested strategy to develop scFv against additional viral epitope tags and validate their
utility in imaging experiments. To identify chimeric scFv that are both soluble and active within
the cellular milieu, we will graft known epitope-specific CDR loops onto a unique panel of stable
scFv scaffolds. In Aim 2, we will use state-of-the-art machine learning protein modeling and
design methods to develop predictive binding models for scFv:viral-epitope complexes, validate
a scFv design pipeline, engineer scFv libraries encoding multiple new peptide-binding solutions,
and screen using innovative high-throughput, high-content in vivo methods. In Aim 3, we will
demonstrate the utility of our newly developed scFv in live-cell imaging experiments by probing
several critical aspects of viral biology. Specifically, we will use our engineered scFv to visualize
and quantify the translation dynamics of flavivirus transmembrane polyproteins, and to monitor
alphavirus particle assembly kinetics. Overall, this project will provide a powerful new pipeline
for generating scFv proteins that can track viral proteins in living cells. The reagents we
generate will provide the virus molecular biology community with new, versatile imaging tools to
better illuminate many important biological processes.
对体内病毒蛋白的整个生命周期进行成像对于了解分子生物学至关重要
处理潜在的病毒感染。活细胞成像长期以来一直使用
荧光蛋白融合标签,例如 GFP。然而,这些标签可以改变大小和
目标蛋白的功能。此外,缓慢的成熟、降解和光漂白
标签会导致信号丢失,从而很难追踪其早期生活和最终命运
许多蛋白质。尤其是病毒多蛋白,由于其
对标签及其在病毒传播过程中经历的广泛加工和组装过敏
生物发生。使用由基因编码的活细胞可逆标记的线性表位标签
探针可以解决许多此类问题。不幸的是,活细胞的工程功能探针
表位成像既昂贵又耗时。在拟议的研究中,我们
结合蛋白质工程、单分子显微镜和生物化学方面的专业知识
完善并加速高度复用的正交表位/探针对的合理设计
活细胞中完整病毒蛋白生命周期的成像。我们展示了我们战略的力量
通过创建结合常用 HA 和 Flag 的新颖 scFv 来获得我们的初步数据
在各种要求苛刻的活细胞成像场景中具有高亲和力的表位。在目标 1 中,我们将
使用我们经过测试的策略来开发针对其他病毒表位标签的 scFv 并验证其
在成像实验中的实用性。鉴定可溶且具有活性的嵌合 scFv
在细胞环境中,我们将把已知的表位特异性 CDR 环移植到独特的稳定面板上
scFv 支架。在目标 2 中,我们将使用最先进的机器学习蛋白质建模和
开发 scFv 预测结合模型的设计方法:病毒表位复合物,验证
scFv 设计流程,设计编码多种新肽结合解决方案的 scFv 库,
并使用创新的高通量、高内涵体内方法进行筛选。在目标 3 中,我们将
通过探测证明我们新开发的 scFv 在活细胞成像实验中的实用性
病毒生物学的几个关键方面。具体来说,我们将使用我们的工程化 scFv 来可视化
量化黄病毒跨膜多蛋白的翻译动态,并监测
甲病毒颗粒组装动力学。总体而言,该项目将提供强大的新管道
用于生成可追踪活细胞中病毒蛋白的 scFv 蛋白。我们的试剂
generate 将为病毒分子生物学界提供新的、多功能的成像工具
更好地阐明许多重要的生物过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Davis Snow其他文献
Improved performance for polymer solar cells though photon energy harvesting and down-conversion of Eu3+-induced diblock polymer aggregates (EIPAs)
- DOI:
10.1039/d3tc01975f - 发表时间:
2023-09 - 期刊:
- 影响因子:6.4
- 作者:
Zaixin Long;Shuxin Li;Wenfei Shen;Tonghui Li;Yao Wang;Shuhan Guo;Matt J. Kipper;Christopher Davis Snow;Laurence A. Belfiore;Jianguo Tang - 通讯作者:
Jianguo Tang
Christopher Davis Snow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Davis Snow', 18)}}的其他基金
Multiplexed imaging of viral protein processing and assembly in live cells
活细胞中病毒蛋白加工和组装的多重成像
- 批准号:
10587280 - 财政年份:2022
- 资助金额:
$ 47.96万 - 项目类别:
Multiplexed imaging of viral protein processing and assembly in live cells
活细胞中病毒蛋白加工和组装的多重成像
- 批准号:
10455219 - 财政年份:2021
- 资助金额:
$ 47.96万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Growth plate-targeted IGF1 to treat Turner Syndrome
生长板靶向 IGF1 治疗特纳综合征
- 批准号:
10819340 - 财政年份:2023
- 资助金额:
$ 47.96万 - 项目类别:
B Cell Biology in the Context of Infectious Diseases, Autoimmunity and B Cell Cancers
传染病、自身免疫和 B 细胞癌症背景下的 B 细胞生物学
- 批准号:
10683443 - 财政年份:2023
- 资助金额:
$ 47.96万 - 项目类别:
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 47.96万 - 项目类别:
Developing a novel disease-targeted anti-angiogenic therapy for CNV
开发针对 CNV 的新型疾病靶向抗血管生成疗法
- 批准号:
10726508 - 财政年份:2023
- 资助金额:
$ 47.96万 - 项目类别: