Specialized cell cycles in early erythropoiesis
早期红细胞生成的特殊细胞周期
基本信息
- 批准号:10214602
- 负责人:
- 金额:$ 43.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAccelerated PhaseAnemiaAnimal ModelBone MarrowBromodeoxyuridineCFU-ECell CycleCell Cycle RegulationCell DensityCell Differentiation processCell ProliferationCell divisionCellsChromatinComb animal structureCoupledDNADNA replication forkDataDevelopmentDevelopmental Delay DisordersDevelopmental ProcessDrosophila genusEmbryonic DevelopmentErythrocytesErythroidErythroid CellsErythropoiesisErythropoietin ReceptorEventFailureFetal LiverG1 PhaseGene AbnormalityGene ExpressionGenesGenetic TranscriptionGoalsHemoglobinHomeostasisIndividualLengthLifeLinkMammalian CellMeasurementMediator of activation proteinMitoticModificationMusMutant Strains MiceNaturePharmaceutical PreparationsPhaseProcessPublishingRegulationReporterRoleS PhaseScienceSignal TransductionSpeedStressTestingTimeValidationWorkXenopusbasecell growthdrug testingfunctional outcomesgenetic manipulationgenome-widein vivoinhibitor/antagonistinnovationinsightnovelnucleotide analogpreventprogenitorself-renewalsingle-cell RNA sequencingstem cellstranscription factortranscriptometranscriptomics
项目摘要
Project Summary
In essentially all lineages, the cell cycle is quiescent in stem cells, and undergoes mitotic exit in terminally
differentiated cells. In the intervening developmental period, however, cell cycles have been regarded as
‘generic’, regulated only with respect to their number, so as to maintain homeostasis or respond to stress. The
generic view of the mammalian cell cycle contrasts with the specialized cell cycles of early embryonic
development in model organisms such as Drosophila or Xenopus, where cell cycle control, including dramatic
changes in cell cycle length, are intimately linked to developmental events. Our recently published work,
including a single-cell transcriptomic analysis of the mouse erythroid trajectory and a study of replication fork
dynamics in early erythropoiesis has uncovered the presence of specialized cell cycles throughout mammalian
erythroid development. Our principal hypothesis is that developmental-stage-specific specializations of the cell
cycle are integral to the process of differentiation, and regulate both incremental changes such as cell growth,
as well as switch-like cell fate decisions. In this proposal, we investigate cell cycle specialization in early
erythropoiesis, orchestrated around the time of a key cell fate switch, from self-renewal of CFU-e progenitors, to
erythroid terminal differentiation (ETD). We found that, preceding this switch, there is progressive shortening of
G1; and that, at the switch, there is an abrupt shortening of S phase. Further, S phase shortening is the result of
a novel mechanism of regulating S phase length, through a global increase in replication fork speed. In this
proposal, we will investigate both the mechanisms, as well as the functional outcomes, of these cell cycle
specializations. In AIM 1, we will carry out functional analysis of four erythroid regulators: E2F4, KLF1, EpoR
and Stat5. Using mice mutant for each of these regulators, we will determine their roles in erythroid cell cycle
specializations and consequent developmental decisions. In AIM 2, we will carry out single-cell RNA-seq analysis
of progenitors deleted for each of the four regulators. We will order cell transcriptomes to generate the erythroid
developmental pesudotime, and determine abnormalities along this pseudotime, including failure to upregulate
replication genes, abnormal cell densities that might reflect developmental delays or arrest, and cell cycle phase
for each cell. We will correlate any abnormalities at the single cell level. In AIM 3, we will determine whether S
phase shortening is required for the CFU-e / ETD switch, using a variety of drugs and genetic manipulation to
prevent, or accelerate, S phase shortening, and examine the consequent effect on the CFU-e/ETD switch.
Further, we will examine the potential role of S phase shortening in modifying chromatin accessibility at the CFU-
e/ETD switch. IMPACT: this proposal deals with innovative cell cycle modifications that might directly regulate
the developmental process. Specifically, delaying the CFU-e/ETD switch with cell cycle modifying drugs results
in amplification of CFU-e, a translational goal in the treatment of anemia.
项目概要
基本上在所有谱系中,干细胞的细胞周期都是静止的,并在终末期经历有丝分裂。
然而,在发育期间,细胞周期被认为是分化的细胞。
“通用”,仅根据其数量进行调节,以维持体内平衡或应对压力。
哺乳动物细胞周期的一般观点与早期胚胎的特殊细胞周期形成对比
果蝇或爪蟾等模型生物体的发育,其中细胞周期控制,包括戏剧性的
细胞周期长度的变化与发育事件密切相关。
包括小鼠红细胞轨迹的单细胞转录组分析和复制叉的研究
早期红细胞生成的动力学揭示了整个哺乳动物中特化细胞周期的存在
我们的主要假设是细胞的发育阶段特异性。
周期是分化过程中不可或缺的一部分,并调节细胞生长等增量变化,
以及类似开关的细胞命运决定在这个提案中,我们研究了早期的细胞周期特化。
红细胞生成,在关键细胞命运转换期间精心策划,从 CFU-e 祖细胞的自我更新,到
我们发现,在此转换之前,红细胞终末分化(ETD)逐渐缩短。
G1;并且,在开关处,S相突然缩短,而且,S相缩短是以下结果。
一种通过整体提高复制叉速度来调节 S 期长度的新机制。
建议,我们将研究这些细胞周期的机制以及功能结果
在 AIM 1 中,我们将对四种红细胞调节因子进行功能分析:E2F4、KLF1、EpoR。
和 Stat5。使用这些调节因子的小鼠突变体,我们将确定它们在红细胞周期中的作用。
在 AIM 2 中,我们将进行单细胞 RNA-seq 分析。
我们将订购细胞转录组来生成红系细胞。
发育伪时间,并确定该伪时间的异常情况,包括上调失败
复制基因、可能反映发育延迟或停滞的异常细胞密度以及细胞周期阶段
对于每个细胞,我们将在单细胞水平上关联任何异常,在 AIM 3 中,我们将确定 S 是否存在。
CFU-e/ETD切换需要缩短相位,使用多种药物和基因操作来
防止或加速 S 期缩短,并检查对 CFU-e/ETD 开关的后续影响。
此外,我们将研究 S 期缩短在改变 CFU-染色质可及性方面的潜在作用。
e/ETD 开关。该提案涉及可能直接调节的创新细胞周期修饰。
具体来说,用细胞周期修饰药物延迟 CFU-e/ETD 转换。
CFU-e 的扩增,这是贫血治疗的转化目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Merav Socolovsky其他文献
Merav Socolovsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Merav Socolovsky', 18)}}的其他基金
EpoR & Stat5 regulation of ribosome biogenesis and protein synthesis in erythropoiesis
EPR
- 批准号:
10682214 - 财政年份:2023
- 资助金额:
$ 43.6万 - 项目类别:
Specialized cell cycles in early erythropoiesis
早期红细胞生成的特殊细胞周期
- 批准号:
10449211 - 财政年份:2019
- 资助金额:
$ 43.6万 - 项目类别:
Specialized cell cycles in early erythropoiesis
早期红细胞生成的特殊细胞周期
- 批准号:
10665584 - 财政年份:2019
- 资助金额:
$ 43.6万 - 项目类别:
Specialized cell cycles in early erythropoiesis
早期红细胞生成的特殊细胞周期
- 批准号:
10016280 - 财政年份:2019
- 资助金额:
$ 43.6万 - 项目类别:
Epigenetic and Cell Cycle Functions of Glucocorticoids in Erythropoietic Stress
糖皮质激素在红细胞生成应激中的表观遗传和细胞周期功能
- 批准号:
8761895 - 财政年份:2014
- 资助金额:
$ 43.6万 - 项目类别:
Epigenetic and Cell Cycle Functions of Glucocorticoids in Erythropoietic Stress
糖皮质激素在红细胞生成应激中的表观遗传和细胞周期功能
- 批准号:
9064125 - 财政年份:2014
- 资助金额:
$ 43.6万 - 项目类别:
Epigenetic and Cell Cycle Functions of Glucocorticoids in Erythropoietic Stress
糖皮质激素在红细胞生成应激中的表观遗传和细胞周期功能
- 批准号:
9273522 - 财政年份:2014
- 资助金额:
$ 43.6万 - 项目类别:
The Role of RB Family Proteins in an S Phase-Dependent Erythroid Commitment Step
RB 家族蛋白在 S 相依赖性红细胞承诺步骤中的作用
- 批准号:
8446029 - 财政年份:2013
- 资助金额:
$ 43.6万 - 项目类别:
DNA Replication and Genome-Wide Demethylation in Erythropoiesis
红细胞生成过程中的 DNA 复制和全基因组去甲基化
- 批准号:
8824527 - 财政年份:2013
- 资助金额:
$ 43.6万 - 项目类别:
DNA Replication and Genome-Wide Demethylation in Erythropoiesis
红细胞生成过程中的 DNA 复制和全基因组去甲基化
- 批准号:
8563099 - 财政年份:2013
- 资助金额:
$ 43.6万 - 项目类别:
相似国自然基金
锁固段加速破裂阶段微震活动模式的成因机制与能量特征
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金钯海胆状纳米异质结构对于伤口愈合的多阶段程序性加速研究
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
Rayleigh-Taylor不稳定性再加速阶段演化机制及粘性、变粘性影响研究
- 批准号:11902040
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
在非线性尺度上探测现阶段宇宙加速膨胀的本质
- 批准号:11675032
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
多阶段退化产品寿命预测理论方法研究
- 批准号:71371183
- 批准年份:2013
- 资助金额:56.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DMREF: Accelerated Design, Discovery, and Deployment of Electronic Phase Transitions (ADEPT)
合作研究:DMREF:电子相变的加速设计、发现和部署 (ADEPT)
- 批准号:
2324172 - 财政年份:2023
- 资助金额:
$ 43.6万 - 项目类别:
Standard Grant
Targeted Neuroplasticity via vagus nerve stimulation to improve urinary dysfunction after spinal cord injury
通过迷走神经刺激的靶向神经可塑性改善脊髓损伤后的泌尿功能障碍
- 批准号:
10785466 - 财政年份:2023
- 资助金额:
$ 43.6万 - 项目类别:
Collaborative Research: DMREF: Accelerated Design, Discovery, and Deployment of Electronic Phase Transitions (ADEPT)
合作研究:DMREF:电子相变的加速设计、发现和部署 (ADEPT)
- 批准号:
2324174 - 财政年份:2023
- 资助金额:
$ 43.6万 - 项目类别:
Standard Grant
SBIR Phase I: A Physics-Informed/Encoded Polymer Informatics Platform for Accelerated Development of Advanced Polymers and Formulations
SBIR 第一阶段:物理信息/编码聚合物信息学平台,用于加速先进聚合物和配方的开发
- 批准号:
2322108 - 财政年份:2023
- 资助金额:
$ 43.6万 - 项目类别:
Standard Grant
IUCRC Phase II UMBC: Center for Accelerated Real time Analytics (CARTA)
IUCRC 第二阶段 UMBC:加速实时分析中心 (CARTA)
- 批准号:
2310844 - 财政年份:2023
- 资助金额:
$ 43.6万 - 项目类别:
Continuing Grant