Functional anomaly mapping of aphasia recovery
失语症恢复的功能异常图谱
基本信息
- 批准号:10214766
- 负责人:
- 金额:$ 12.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAnatomyAphasiaArchitectureAreaAwardBehavioralBiologicalBlood VesselsBrainCharacteristicsChronicClinicalCommunicationDataData SetDeafferentation procedureDiagnosisDistantExhibitsFunctional Magnetic Resonance ImagingFunctional disorderGoalsIndividualKnowledgeLanguageLeadLeftLengthLesionLocationLongitudinal StudiesLongitudinal prospective studyMachine LearningMapsMeasuresMentorsModelingNational Institute on Deafness and Other Communication DisordersNeuronal PlasticityOutcomePatternPerformancePhasePhysiologyRecoveryReproducibilityResearchResearch TrainingResidual stateResolutionRestSample SizeScanningSeveritiesSignal TransductionSourceSpecific qualifier valueStrategic PlanningStrokeStructureSymptomsTestingTimeTrainingaphasia recoverybasebehavior measurementbehavioral outcomebiomarker developmentbrain behaviorchronic strokeclinical decision-makingcohortexperienceimaging modalityimprovedmachine learning algorithmmultimodalityneural correlateneurobiological mechanismneuroimagingneurological rehabilitationneuromechanismpost strokeprogramspublic health relevancespatiotemporalstroke recoverystroke survivorstroke-induced aphasiatoolwhite matter
项目摘要
Project Summary
Difficulty communicating (aphasia) is one of the most common and debilitating results of left-hemisphere
stroke. Although aphasia symptoms are highly variable and recovery is difficult to predict, much research has
shown that lesion size and location are major drivers of aphasia symptoms and recovery. However, this
previous research has only considered direct anatomical damage caused by the lesion. This is a critical
limitation because stroke lesions also cause indirect effects on the function of brain structures distant from the
lesion. Throughout this application, I refer to this as “remote dysfunction.” Although initially thought to resolve
quickly after the stroke, remote dysfunction is now known to persist throughout recovery and independently
contribute to outcomes. Studies of aphasia recovery have focused almost exclusively on the idea of recovery
through reorganization, whereby behavioral improvement occurs through plastic reorganization of brain
networks. These studies have eschewed the older idea that recovery occurs through partial resolution of
remote dysfunction (RRD) caused by lesions. Consequently, it is not clear how RRD contributes to aphasia
recovery. The applicant has developed a new machine learning approach called functional anomaly mapping
(FAM) that uses resting BOLD functional MRI signal to map remote dysfunction throughout the brain in
individual stroke survivors. FAM maps have much better test-retest reliability than current measures, like task-
related fMRI activity and resting state functional connectivity, as well as several other features that make it
promising as a clinically useful tool. The applicant has already demonstrated that remote dysfunction
measured with FAM relates to behavioral outcomes in people with chronic aphasia. During the mentored
phase of this award, the applicant will optimize the FAM approach and test competing hypotheses about the
biological mechanisms generating the remote dysfunction measured in chronic aphasia. During the
independent phase, the applicant proposes a longitudinal study to understand the contribution of RRD to
aphasia recovery. The applicant proposes a comprehensive training plan to expand his knowledge in the
following areas: the biological mechanisms of stroke recovery and neuroplasticity beyond aphasia, machine
learning, biomarker development, and advanced neuroimaging analysis. The research and training during this
award will enable the applicant to develop a long-term, independent research program focused on
understanding the neural correlates of aphasia and developing translational brain measures to inform clinical
decision-making in aphasia neurorehabilitation.
项目摘要
沟通难度(失语)是左 - 半球最常见和令人衰弱的结果之一
中风。尽管失语症症状是高度可变的,并且恢复很难预测,但很多研究
表明病变的大小和位置是失语症症状和康复的主要驱动因素。但是,这个
先前的研究仅考虑了病变引起的直接解剖损害。这是一个关键
限制是因为中风病变也会对远离大脑结构功能的功能间接影响
病变。通过此应用程序,我将其称为“远程功能障碍”。尽管最初被认为是解决的
中风后很快,现在已知远程功能障碍在整个恢复过程中持续存在,并且独立
有助于结果。失语症恢复的研究几乎完全集中在恢复的想法上
通过重组,行为改善通过大脑的塑性重组发生
网络。这些研究避免了较旧的想法,即通过部分解决
病变引起的远程功能障碍(RRD)。因此,尚不清楚RRD如何导致失语症
恢复。申请人开发了一种新的机器学习方法,称为功能异常映射
(FAM)使用静止大胆的功能性MRI信号在整个大脑中绘制远程功能障碍
个别中风存活。 FAM地图的重测可靠性比当前的措施(例如任务)要好得多。
相关的fMRI活动和静止状态功能连接,以及其他几个功能
作为临床上有用的工具有希望。申请人已经证明了远程功能障碍
用与慢性失语症患者的行为结果有关的FAM衡量。在这件事期间
该奖项的阶段,申请人将优化FAM方法,并测试有关该方法的竞争假设
在慢性失语症中测量的远程功能障碍的生物学机制。在
独立阶段,申请人提出了一项纵向研究,以了解RRD对
失语症恢复。申请人提出一项全面的培训计划,以扩大他的知识
以下领域:中风恢复和神经塑性的生物学机制超出了失语症,机器
学习,生物标志物发展和高级神经影像学分析。在此期间的研究和培训
奖励将使申请人能够制定一项长期独立研究计划,以
了解失语症的神经相关性并制定转化大脑测量以告知临床
失语症神经康复中的决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew T DeMarco其他文献
Andrew T DeMarco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew T DeMarco', 18)}}的其他基金
Neural correlates of treatment-induced recovery of phonological processing in chronic aphasia
慢性失语症治疗引起的语音处理恢复的神经相关性
- 批准号:
8990733 - 财政年份:2015
- 资助金额:
$ 12.15万 - 项目类别:
Neural correlates of treatment-induced recovery of phonological processing in chronic aphasia
慢性失语症治疗引起的语音处理恢复的神经相关性
- 批准号:
8907444 - 财政年份:2015
- 资助金额:
$ 12.15万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 12.15万 - 项目类别:
Charge-Based Brain Modeling Engine with Boundary Element Fast Multipole Method
采用边界元快速多极子法的基于电荷的脑建模引擎
- 批准号:
10735946 - 财政年份:2023
- 资助金额:
$ 12.15万 - 项目类别:
Exploratory Analysis Tools for Developmental Studies of Brain Microstructure with Diffusion MRI
利用扩散 MRI 进行脑微结构发育研究的探索性分析工具
- 批准号:
10645844 - 财政年份:2023
- 资助金额:
$ 12.15万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 12.15万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 12.15万 - 项目类别: