Functional anomaly mapping of aphasia recovery

失语症恢复的功能异常图谱

基本信息

  • 批准号:
    10837812
  • 负责人:
  • 金额:
    $ 24.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Project Summary Difficulty communicating (aphasia) is one of the most common and debilitating results of left-hemisphere stroke. Although aphasia symptoms are highly variable and recovery is difficult to predict, much research has shown that lesion size and location are major drivers of aphasia symptoms and recovery. However, this previous research has only considered direct anatomical damage caused by the lesion. This is a critical limitation because stroke lesions also cause indirect effects on the function of brain structures distant from the lesion. Throughout this application, I refer to this as “remote dysfunction.” Although initially thought to resolve quickly after the stroke, remote dysfunction is now known to persist throughout recovery and independently contribute to outcomes. Studies of aphasia recovery have focused almost exclusively on the idea of recovery through reorganization, whereby behavioral improvement occurs through plastic reorganization of brain networks. These studies have eschewed the older idea that recovery occurs through partial resolution of remote dysfunction (RRD) caused by lesions. Consequently, it is not clear how RRD contributes to aphasia recovery. The applicant has developed a new machine learning approach called functional anomaly mapping (FAM) that uses resting BOLD functional MRI signal to map remote dysfunction throughout the brain in individual stroke survivors. FAM maps have much better test-retest reliability than current measures, like task- related fMRI activity and resting state functional connectivity, as well as several other features that make it promising as a clinically useful tool. The applicant has already demonstrated that remote dysfunction measured with FAM relates to behavioral outcomes in people with chronic aphasia. During the mentored phase of this award, the applicant will optimize the FAM approach and test competing hypotheses about the biological mechanisms generating the remote dysfunction measured in chronic aphasia. During the independent phase, the applicant proposes a longitudinal study to understand the contribution of RRD to aphasia recovery. The applicant proposes a comprehensive training plan to expand his knowledge in the following areas: the biological mechanisms of stroke recovery and neuroplasticity beyond aphasia, machine learning, biomarker development, and advanced neuroimaging analysis. The research and training during this award will enable the applicant to develop a long-term, independent research program focused on understanding the neural correlates of aphasia and developing translational brain measures to inform clinical decision-making in aphasia neurorehabilitation.
项目摘要难度(失语)是左眼中风的最常见和令人衰弱的结果之一。尽管失语症症状是高度可变的,并且难以预测,但许多研究表明,病变的大小和位置是失语症症状和康复的主要驱动因素。但是,这项先前的研究仅考虑了病变造成的直接解剖损害。这是一个关键限制,因为中风病变还会对远离病变的大脑结构的功能进行间接影响。通过此应用程序,我将其称为“远程功能障碍”。尽管最初被认为是在中风后快速解决的,但现在已知远程功能障碍在整个恢复过程中持续存在,并独立促进结果。失语症恢复的研究几乎完全集中在通过重组恢复的概念上,从而通过脑网络的塑性重组进行行为改善。这些研究避免了一个较旧的想法,即恢复是通过病变引起的远程功能障碍(RRD)的部分分辨率而发生的。因此,尚不清楚RRD如何促进失语症康复。该应用程序开发了一种称为功能异常映射(FAM)的新机器学习方法,该方法使用静止的大胆功能性MRI信号在单个中风存活中绘制整个大脑的远程功能障碍。 FAM地图的测试可靠性比当前的测量值(例如与任务相关的fMRI活动和静止状态功能连接性)以及其他几个功能,这些功能使其成为临床上有用的工具。该适用的已经证明,与FAM有关的远程功能障碍与慢性失语症患者的行为结果有关。在该奖项的指导阶段,适用的将优化FAM方法,并测试有关在慢性失语症中测得的远程功能障碍的生物学机制的竞争假设。在独立阶段,适用的提案进行了一项纵向研究,以了解RRD对失语症恢复的贡献。该申请提出了一项全面的培训计划,以扩大他在以下领域的知识:中风恢复和神经塑性的生物学机制,超出了失语症,机器学习,生物标志物发展和先进的神经影像学分析。该奖项期间的研究和培训将使该应用程序能够制定一项长期独立的研究计划,旨在理解失语症的神经自我反应并制定转化脑措施,以告知Aphisia Neurorehabicitation的临床决策。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew T DeMarco其他文献

Andrew T DeMarco的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew T DeMarco', 18)}}的其他基金

Functional anomaly mapping of aphasia recovery
失语症恢复的功能异常图谱
  • 批准号:
    10398979
  • 财政年份:
    2021
  • 资助金额:
    $ 24.9万
  • 项目类别:
Functional anomaly mapping of aphasia recovery
失语症恢复的功能异常图谱
  • 批准号:
    10214766
  • 财政年份:
    2021
  • 资助金额:
    $ 24.9万
  • 项目类别:
Neural correlates of treatment-induced recovery of phonological processing in chronic aphasia
慢性失语症治疗引起的语音处理恢复的神经相关性
  • 批准号:
    8990733
  • 财政年份:
    2015
  • 资助金额:
    $ 24.9万
  • 项目类别:
Neural correlates of treatment-induced recovery of phonological processing in chronic aphasia
慢性失语症治疗引起的语音处理恢复的神经相关性
  • 批准号:
    8907444
  • 财政年份:
    2015
  • 资助金额:
    $ 24.9万
  • 项目类别:

相似国自然基金

无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
  • 批准号:
    62372118
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
NURBS参数化的自交理论与算法研究
  • 批准号:
    12301490
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
分组密码算法后门的研究
  • 批准号:
    62302293
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
时序深度可加网络的算法与学习理论研究
  • 批准号:
    62306338
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Charge-Based Brain Modeling Engine with Boundary Element Fast Multipole Method
采用边界元快速多极子法的基于电荷的脑建模引擎
  • 批准号:
    10735946
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Exploratory Analysis Tools for Developmental Studies of Brain Microstructure with Diffusion MRI
利用扩散 MRI 进行脑微结构发育研究的探索性分析工具
  • 批准号:
    10645844
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
  • 批准号:
    10656110
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
  • 批准号:
    10699190
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了