Cortical Synaptic Dynamics during Learning in the Aging Brain
衰老大脑学习过程中的皮质突触动力学
基本信息
- 批准号:9545894
- 负责人:
- 金额:$ 14.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccidentsAction PotentialsAdultAffectAgeAge of OnsetAgingAnatomyAreaAttentionBehavioralBrainCerebral cortexChronicCountryDangerousnessDendritic SpinesElderlyElectrophysiology (science)EquilibriumExperimental ModelsForelimbFutureGoalsHumanImageImpairmentInferiorInjuryInterneuronsKnowledgeLearningLifeMaintenanceMediatingMemoryMicroscopyModificationMotorMotor CortexMusNeocortexNeurodegenerative DisordersNeuronsOutputParvalbuminsPerformancePeriodicityPopulationQuality of lifeResearchSocial WelfareSomatosensory CortexSynapsesSynaptic plasticityTechniquesTestingTherapeuticTimeTrainingTransgenic MiceVibrissaeViral Vectorage relatedagedaging brainbrain celldensitydesigndexterityexcitatory neuronexecutive functiongenetic approachhippocampal pyramidal neuronhuman subjectimprovedin vivoinnovationmemory recallmotor learningneuromechanismnormal agingoptogeneticspatch clamppreventsensory discriminationsomatosensorytherapeutic developmenttherapy developmenttransmission processtwo-photon
项目摘要
PROJECT SUMMARY/ABSTRACT
The neural mechanisms that mediate the decline of brain performance with aging are poorly
defined and affect many aspects of normal aging life: reductions in motor dexterity, sensory
discrimination, executive function, and attention which impact the degree of independence,
number of injuries, and fatal accidents. We will define mechanisms of age-related changes in
synaptic plasticity and investigate their impact in memory and learning. Our hypothesis is that in
the aged cerebral cortex, disruption of the excitation/inhibition balance at the level of the
microcircuits of layer 5 (L5) pyramidal neurons leads to reduced formation of long-lasting stable
synapses between excitatory neurons, resulting in impaired learning. We have recently
described that dendritic spine density of aged mice is stable, but that their dynamics are
elevated in somatosensory cortex. But, we do not if density and dynamics of dendritic spines
are differentially affected by age in different brain areas. Also, the mechanisms underlying the
alteration in synaptic dynamics in the aging brain are unexplored. One possibility is that the
intracortical inhibition controlling synaptic plasticity in the adult brain is released with aging
allowing the formation of excess synaptic contacts, many of them meaningless and
subsequently be eliminated and making the handling and storing of information less effective.
Thus, increasing levels of intracortical inhibition in the aged brain may prevent alterations in
synaptic dynamics and preserve brain performance. We will test the following hypotheses: (a)
elevated dendritic spine dynamics in the aged brain impedes the creation of memory-forming
synaptic contacts and impairs the ability of cortical circuits to store/manage information; (b) age-
related reduction in inhibitory transmission at the level of the local circuitry of L5 pyramidal
neurons is responsible for the increased instability of dendritic spines; (c) restoring intracortical
inhibition in the primary motor cortex of aged mice will stabilize dendritic spines of L5 pyramidal
neurons and improve performance in a motor learning task. We will use transgenic mice for in
vivo 2PE microscopy and optogenetics in the conditional expression of viral vectors, behavioral
tasks, and electrophysiological recordings of synaptically connected neurons: Aim 1 will
determine that the alteration of synaptic dynamics in the aged brain is a maladaptive
mechanism impairing learning. Aim 2 will identify age-dependent changes in PV and
SOM neurons of the L5 cortical microcircuit responsible for instability of dendritic spines
in pyramidal neurons and impaired learning. Aim 3 will confirm that the age-related
decrease of inhibition in L5 pyramidal neurons impairs synaptic plasticity and learning.
By using state-of-the-art techniques and innovative experimental approaches will elucidate the
effects of normal aging on the assembly and maintenance of cortical circuits to facilitate future
development of therapeutic interventions designed to delay the onset of aging-related brain
decline and prolong the quality of life and welfare of the elderly. Results from the proposed
research may be applied and used for studies on other neurodegenerative disorders.
项目概要/摘要
调节大脑性能随衰老而下降的神经机制很差
定义并影响正常衰老生活的许多方面:运动灵活性、感觉能力下降
歧视、执行功能和注意力会影响独立程度,
受伤和死亡事故的数量。我们将定义与年龄相关的变化的机制
突触可塑性并研究它们对记忆和学习的影响。我们的假设是,在
老化的大脑皮层,兴奋/抑制平衡的破坏
第 5 层 (L5) 锥体神经元的微电路导致持久稳定神经元的形成减少
兴奋性神经元之间的突触,导致学习障碍。我们最近有
描述老年小鼠的树突棘密度是稳定的,但它们的动态变化
体感皮层升高。但是,我们不知道树突棘的密度和动力学
不同大脑区域受年龄的影响不同。此外,其背后的机制
衰老大脑中突触动力学的改变尚未被探索。一种可能性是
控制成人大脑突触可塑性的皮质内抑制随着衰老而释放
允许形成过多的突触接触,其中许多是毫无意义的并且
随后被消除,从而降低信息处理和存储的效率。
因此,增加老年大脑皮质内抑制水平可能会阻止大脑功能的改变。
突触动力学并保持大脑性能。我们将检验以下假设:(a)
衰老大脑中树突棘动力学的升高阻碍了记忆形成的产生
突触接触并损害皮质回路存储/管理信息的能力; (b) 年龄-
L5 锥体局部电路水平的抑制性传递相关减少
神经元导致树突棘的不稳定性增加; (c) 恢复皮质内
抑制老年小鼠初级运动皮层将稳定 L5 锥体的树突棘
神经元并提高运动学习任务的表现。我们将使用转基因小鼠
体内 2PE 显微镜和光遗传学在病毒载体条件表达、行为
任务和突触连接神经元的电生理记录:目标 1 将
确定老年大脑中突触动力学的改变是一种适应不良
损害学习的机制。目标 2 将确定 PV 和年龄相关的变化
L5 皮质微电路的 SOM 神经元负责树突棘的不稳定
锥体神经元和学习障碍。目标 3 将确认与年龄相关的
L5 锥体神经元抑制的减少会损害突触可塑性和学习能力。
通过使用最先进的技术和创新的实验方法将阐明
正常老化对皮质回路组装和维护的影响,以促进未来
开发旨在延缓与衰老相关的大脑发生的治疗干预措施
降低并延长老年人的生活质量和福利。拟议的结果
研究可应用于其他神经退行性疾病的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ricardo Mostany其他文献
Ricardo Mostany的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ricardo Mostany', 18)}}的其他基金
Impact of hypertension and high-fat diet on mechanisms by which estradiol affects cortical synaptic plasticity.
高血压和高脂肪饮食对雌二醇影响皮质突触可塑性机制的影响。
- 批准号:
10334233 - 财政年份:2022
- 资助金额:
$ 14.91万 - 项目类别:
Impact of hypertension and high-fat diet on mechanisms by which estradiol affects cortical synaptic plasticity.
高血压和高脂肪饮食对雌二醇影响皮质突触可塑性机制的影响。
- 批准号:
10579241 - 财政年份:2022
- 资助金额:
$ 14.91万 - 项目类别:
Dysfunctional homeostatic plasticity in Alzheimer's Disease
阿尔茨海默氏病的稳态可塑性功能失调
- 批准号:
10369096 - 财政年份:2021
- 资助金额:
$ 14.91万 - 项目类别:
Cortical Synaptic Dynamics during Learning in the Aging Brain
衰老大脑学习过程中的皮质突触动力学
- 批准号:
9924419 - 财政年份:2016
- 资助金额:
$ 14.91万 - 项目类别:
Cortical Synaptic Dynamics during Learning in the Aging Brain
衰老大脑学习过程中的皮质突触动力学
- 批准号:
9177545 - 财政年份:2016
- 资助金额:
$ 14.91万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Intense Noise Exposure Impacts Performance of Vestibular Dependent Behaviors
强烈的噪音暴露会影响前庭依赖性行为的表现
- 批准号:
10663836 - 财政年份:2020
- 资助金额:
$ 14.91万 - 项目类别:
Noise-Induced Synaptic Loss and Vestibular Dysfunction
噪音引起的突触丧失和前庭功能障碍
- 批准号:
10612731 - 财政年份:2020
- 资助金额:
$ 14.91万 - 项目类别:
Cortical Synaptic Dynamics during Learning in the Aging Brain
衰老大脑学习过程中的皮质突触动力学
- 批准号:
9924419 - 财政年份:2016
- 资助金额:
$ 14.91万 - 项目类别:
Cortical Synaptic Dynamics during Learning in the Aging Brain
衰老大脑学习过程中的皮质突触动力学
- 批准号:
9177545 - 财政年份:2016
- 资助金额:
$ 14.91万 - 项目类别: