How do neurons in the brain decide to refine their synaptic connections in vivo?
大脑中的神经元如何决定在体内完善其突触连接?
基本信息
- 批准号:9383862
- 负责人:
- 金额:$ 68.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-16 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:Alpha CellAutistic DisorderAxonBrainCD47 geneCell Adhesion MoleculesCerebral hemisphereComplementCuesDataDefectDevelopmentDiseaseDominant-Negative MutationElectrophysiology (science)ElectroporationEmotionalEtiologyFunctional disorderGene ExpressionGeneticGoalsHippocampus (Brain)ImageJAK2 geneKnock-outKnockout MiceLimbic SystemMaintenanceMediatingMemoryMental disordersMicrogliaMolecularMusNeuronsPathway interactionsPhagocytosisPhosphotransferasesPhysiologicalPlayPopulationPresynaptic ReceptorsProcessProtein Tyrosine KinaseRegulationRoleSchizophreniaSignal TransductionSignaling MoleculeSocial BehaviorSynapsesSystemTestingTimeWorkcingulate cortexdesigngene complementationin uteroin vivoinsightmutantnervous system disorderneural circuitneuropsychiatric disorderneurotransmitter releasenoveloptogeneticsoverexpressionpostsynaptic neuronspreventrelating to nervous systemresponsetransgene expression
项目摘要
Formation of functional neural circuits is critical for proper functioning of the brain. To establish the most
efficient synaptic circuits, synaptic connections must be refined by neural activity during development. In this
proposal, we will determine the molecules and manner by which functional circuits are established by neural
activity, focusing on the limbic system (including the hippocampus and cingulate cortex), which is implicated in
emotional processing, memory formation and social behavior. Using a mouse genetic system in which
restricted populations of hippocampal neurons can be conditionally inactivated, we found that hippocampal
axons are refined through activity-dependent competition, where active neuronal connections stay (maintained)
while inactive ones leave (eliminated). We further found that a cell adhesion molecule SIRP from
postsynaptic neurons stabilizes active synapses through its presynaptic receptor CD47, serving as a "Stay"
signal. To identify the signaling molecules that play critical roles in inactive axon elimination ("Go" signal), we
generated a new system in which neural activity and gene expression can be conditionally controlled in vivo,
using in utero electroporation. When neurotransmitter release is blocked in a subset of neurons in the cingulate
cortex, their callosal projections (the major connections between the cerebral hemispheres) are eliminated
during development. Using this system, we screened for signaling molecules that are upregulated in inactive
neurons right before their axons start to leave and identified the Ca2+-dependent tyrosine kinase Pyk2. Inactive
axons were not eliminated when a kinase-dead mutant of Pyk2 was expressed, indicating that Pyk2 activity is
necessary for inactive axons to leave. We further identified that a Pyk2-interacting kinase, JAK2, is also
necessary for inactive axon elimination. Consistently, Pyk2 and JAK2 are activated in inactive neurons. Finally,
we found that overexpression of Pyk2 or JAK2 induces axonal elimination even when axons are active. We
propose that the Pyk2-JAK2 pathway is the "Go" signal and serves as the determinant of axon refinement. To
further characterize this pathway and to understand how the "Go" and "Stay" pathways regulate activity-
dependent axon/synapse refinement, we propose to: Aim 1: Investigate the role of Pyk2 and JAK2 for
axon/synapse refinement in physiological conditions. Aim 2: Analyze the electrophysiological consequences of
Pyk2/JAK2 inactivation during synapse refinement using conditional KO mice. Aim 3: Examine whether the
Pyk2-JAK2 pathway provides cues for microglial clearance of inactive axons in vivo. Aim 4: Investigate the
interaction between the Stay (SIRP-CD47) and Go (Pyk2-JAK2) pathways in axon/synapse refinement in
vivo. Our project will molecularly delineate how neurons decide to establish functional synaptic connections in
the mammalian brain. Pyk2 and JAK2 are associated with various neuropsychiatric disorders. Many forms of
mental illness including autism and schizophrenia are associated with abnormal alterations in the limbic
circuitry. Thus, our studies should also yield novel insights into the etiology and treatment of such disorders.
功能性神经回路的形成对于大脑的正常功能至关重要。建立最大的
有效的合成回路,突触连接必须通过发育过程中的神经活动来完善。在这个
提案,我们将确定通过神经建立功能电路的分子和方式
活动,专注于边缘系统(包括海马和扣带皮质),该活动已在
情绪处理,记忆形成和社会行为。使用小鼠遗传系统
海马神经元的受限种群可能有条件地灭活,我们发现海马
轴突是通过活动依赖性竞争来完善的,在该竞争中,活跃的神经元连接停留(维持)
当不活动的人离开时(被淘汰)。我们进一步发现细胞粘合分子sirp
突触后神经元通过其突触前受体CD47稳定活性突触,作为“留下”
信号。确定在消除无效轴突中起关键作用的信号传导分子(“ GO”信号),我们
产生了一个新系统,其中神经活动和基因表达可以在体内有条件地控制,
在子宫电穿孔中使用。当神经递质释放被阻塞在扣带中的神经元中
皮层,他们的callosal项目(大脑半球之间的主要连接)被消除
在开发过程中。使用此系统,我们筛选了在非活动中上调的信号分子
神经元在轴突开始离开并鉴定出Ca2+依赖性酪氨酸激酶Pyk2。不活动
当表达Pyk2的激酶死亡突变体时,未消除轴突,表明Pyk2活性为
不活动轴突离开所必需的。我们进一步确定PYK2相互作用激酶JAK2也是
消除无活性轴突所必需的。一致地,PYK2和JAK2在非活性神经元中被激活。最后,
我们发现,即使轴突活跃,PYK2或JAK2的过表达也会诱导轴突消除。我们
建议PYK2-JAK2途径是“ GO”信号,并作为轴突改进的确定。到
进一步描述了这一途径,并了解“ go”和“ arter”途径如何调节活动 -
依赖的轴突/突触改进,我们建议:目标1:调查PYK2和JAK2的作用
轴突/突触在身体条件下的细化。目标2:分析电生理后果
PYK2/JAK2使用条件KO小鼠在突触细化过程中失活。目标3:检查是否
PYK2-JAK2途径为体内非活性轴突的小胶质清除提供了线索。目标4:调查
轴突/突触细化中的住宿(sirp-cd47)与GO(pyk2-jak2)途径之间的相互作用
体内。我们的项目将分子描述神经元如何决定建立功能突触连接
哺乳动物的大脑。 PYK2和JAK2与各种神经精神疾病有关。多种形式
包括自闭症和精神分裂症在内的精神疾病与边缘的异常改变有关
电路。这也是我们的研究还应对此类疾病的病因和治疗产生新的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hisashi Umemori其他文献
Hisashi Umemori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hisashi Umemori', 18)}}的其他基金
Molecular Codes for the Establishment of Functionally Segregated Dopaminergic Circuits
建立功能分离的多巴胺能回路的分子密码
- 批准号:
10415208 - 财政年份:2021
- 资助金额:
$ 68.63万 - 项目类别:
Molecular Codes for the Establishment of Functionally Segregated Dopaminergic Circuits
建立功能分离的多巴胺能回路的分子密码
- 批准号:
10296721 - 财政年份:2021
- 资助金额:
$ 68.63万 - 项目类别:
Molecular Codes for the Establishment of Functionally Segregated Dopaminergic Circuits
建立功能分离的多巴胺能回路的分子密码
- 批准号:
10618351 - 财政年份:2021
- 资助金额:
$ 68.63万 - 项目类别:
Finding the projection-specific dopaminergic synaptic organizers
寻找投射特异性多巴胺能突触组织者
- 批准号:
10162573 - 财政年份:2017
- 资助金额:
$ 68.63万 - 项目类别:
Small Molecule Inhibitors of FGF22-Mediated Excitatory Synaptogenesis & Epilepsy
FGF22 介导的兴奋性突触发生的小分子抑制剂
- 批准号:
8325818 - 财政年份:2012
- 资助金额:
$ 68.63万 - 项目类别:
Small Molecule Inhibitors of FGF22-Mediated Excitatory Synaptogenesis & Epilepsy
FGF22 介导的兴奋性突触发生的小分子抑制剂
- 批准号:
8792428 - 财政年份:2012
- 资助金额:
$ 68.63万 - 项目类别:
Synapse Maturation by Activity-Dependent Ectodomain Shedding of SIRP
SIRP 活性依赖性胞外域脱落导致突触成熟
- 批准号:
8026981 - 财政年份:2011
- 资助金额:
$ 68.63万 - 项目类别:
相似国自然基金
菌源抗炎因子及神经活性物质调控自闭症谱系障碍的机制研究
- 批准号:32300094
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
孕期镉暴露导致的脑神经突触功能异常的分子机制及其在儿童自闭症发生发展中关系研究
- 批准号:82371177
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
PV中间神经元中Cul3调节自闭症样行为的机制研究
- 批准号:32300817
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用原位基因编辑技术编辑猕猴特定脑区的自闭症基因,探究不同脑区与自闭症的表型关系及机制
- 批准号:82360226
- 批准年份:2023
- 资助金额:32.2 万元
- 项目类别:地区科学基金项目
海马DG脑区PV抑制性中间神经元参与认知灵活性调控的机制及其失调与自闭症样行为的关系
- 批准号:82301727
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating role of maternal gut microbiome in microglia-neuron dynamics and development of somatosensory circuits
研究母体肠道微生物组在小胶质细胞神经元动力学和体感回路发育中的作用
- 批准号:
10569275 - 财政年份:2022
- 资助金额:
$ 68.63万 - 项目类别:
Investigating role of maternal gut microbiome in microglia-neuron dynamics and development of somatosensory circuits
研究母体肠道微生物组在小胶质细胞神经元动力学和体感回路发育中的作用
- 批准号:
10117274 - 财政年份:2020
- 资助金额:
$ 68.63万 - 项目类别:
Neurobiology of Aggression Comorbidity in Autism
自闭症攻击性合并症的神经生物学
- 批准号:
9416303 - 财政年份:2017
- 资助金额:
$ 68.63万 - 项目类别:
Systematic functional dissection of neuronal transcriptome diversity
神经元转录组多样性的系统功能剖析
- 批准号:
9272022 - 财政年份:2016
- 资助金额:
$ 68.63万 - 项目类别:
TRIM67 regulates growth cone filopodia during netrin-dependent axon guidance
TRIM67 在 netrin 依赖的轴突引导过程中调节生长锥丝状伪足
- 批准号:
9308705 - 财政年份:2016
- 资助金额:
$ 68.63万 - 项目类别: