Systematic functional dissection of neuronal transcriptome diversity
神经元转录组多样性的系统功能剖析
基本信息
- 批准号:9272022
- 负责人:
- 金额:$ 19.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-15 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlpha CellAlternative SplicingAutistic DisorderAxonBiological AssayBiological ModelsBrainCRISPR libraryCRISPR screenCRISPR/Cas technologyCell MaintenanceCell physiologyCellsClonal ExpansionClone CellsCloningComputational TechniqueDataDefectDetectionDevelopmentDevelopmental ProcessDiseaseDissectionEmployee StrikesEpilepsyExonsFlow CytometryGenesGenetic ScreeningGenome engineeringGenotypeGuide RNAHomeostasisImageImage AnalysisIn VitroIndividualKnowledgeLibrariesLiteratureMammalsMediatingMessenger RNAMethodsModalityMolecularMonitorMorphogenesisMorphologyMotor NeuronsMusMutant Strains MiceMutationNatureNeuraxisNeuronal DifferentiationNeuronsNonhomologous DNA End JoiningPathologicPhenotypePhysiologyPilot ProjectsPopulationProcessProtein IsoformsProteomeProtocols documentationRNA SplicingRNA libraryRNA-Binding ProteinsRegulationReporterRoleSorting - Cell MovementSpinalSubfamily lentivirinaeSystemSystems AnalysisTestingTranscriptVariantViralVirusWorkaxon growthbasecandidate selectioncell typecellular transductiondesigndriving forceembryonic stem cellexperimental studyflexibilitygene functiongenome editinggenome-wideimprovedin vitro Modelmammalian genomemigrationmutantnervous system disorderneurodevelopmentnew therapeutic targetnovelparticleprogramsrelating to nervous systemscreeningsuccesstranscriptome
项目摘要
Project summary
Systematic functional dissection of neuronal transcriptome diversity
Cell type-specific alternative splicing (AS) enormously amplifies the neuronal transcriptome diversity. Proper
regulation of such molecular complexity and its establishment during development is critical for the maturation
of nerve cells and maintenance of their homeostasis. Multiple RNA-binding proteins (RBPs) have been
identified to control neuron-specific splicing. We pioneered the development of an “RBP-centric” strategy to
reconstruct precisely the splicing regulatory networks of specific classes of neuronal RBPs using an integrative
analysis framework that combines multiple modalities of experimental and computational data. These efforts
generated prioritized lists of developmentally regulated exons that will be studied in details to improve our
understanding of the functional importance of AS at various stages of neuronal differentiation. However, a
major roadblock for the field is our current inability to efficiently interrogate the function of a vast number of
splice variants. To fill in this gap, we propose to develop an “exon-centric” strategy using an exon-
specific genetic screen to dissect directly and systematically the functional role of specific splice
variants during neural development. For a pilot study, our focus is to identify alternative exons that
regulate axon morphogenesis in an in vitro model system of spinal motor neurons derived from mouse
embryonic stem (mES) cells. In Aim 1, we will establish a large-scale genome-editing platform to delete
individual alternative exons in mES cells through lentivirus-based, CRISPR/Cas9-mediated genome
engineering. We designed a cloning strategy that will allow us to build a CRISPR library with a large pool of
paired guide RNAs (gRNAs) targeting individual alternative exons to trigger specific exon deletion. Parameters
for optimizing the complexity of the library, viral delivery, and efficiency of genome editing will be established.
In Aim 2, we will perform a pilot screen of ~100 prioritized neuronal alternative exons and identify those
important for axon outgrowth. To perform this screening based on analysis of neuronal morphology in the
absence of a reliable reporter, we propose a strategy to derive clonal mutant mES cell populations from
transduced cell pools in a high-throughput format. These clonal lines carrying individual mutations will be
subject to paralleled neuronal differentiation, high-throughput imaging and phenotypic analysis. This strategy
will allow sensitive detection of mutants showing fine morphological defects in axon growth, which will be
genotyped and further validated. Our approach will therefore combine advantages of being both scalable and
flexible. This study will establish a very effective method to extend our knowledge of gene function to the level
of individual splice variants. This strategy can be readily adapted to study the molecular programs underlying
neural differentiation, migration, and function in normal and pathological contexts.
项目概要
神经元转录组多样性的系统功能剖析
细胞类型特异性选择性剪接(AS)极大地增强了神经元转录组的多样性。
这种分子复杂性的调节及其在发育过程中的建立对于成熟至关重要
神经细胞及其稳态的维持已被证实。
我们率先开发了“以 RBP 为中心”的策略来控制神经元特异性剪接。
使用综合方法精确重建特定类别神经 RBP 的剪接调节网络
结合了多种实验和计算数据模式的分析框架。
优先生成的发育调控外显子列表将被详细研究以改进我们的
了解 AS 在神经分化各个阶段的功能重要性。
该领域的主要障碍是我们目前无法有效地询问大量的功能
为了填补这一空白,我们建议使用外显子开发“以外显子为中心”的策略。
特异性遗传筛选,直接系统地剖析特定剪接的功能作用
对于神经发育过程中的变异,我们的重点是确定替代外显子。
在小鼠脊髓运动神经元体外模型系统中调节轴突形态发生
在目标1中,我们将建立一个大规模的基因组编辑平台来删除胚胎干细胞。
通过基于慢病毒、CRISPR/Cas9 介导的基因组在 mES 细胞中单独替代外显子
我们设计了一种克隆策略,使我们能够构建具有大量库的 CRISPR 文库。
配对引导 RNA (gRNA) 靶向单个替代外显子以触发特定外显子删除参数。
为了优化文库的复杂性,将建立病毒传递和基因组编辑的效率。
在目标 2 中,我们将对约 100 个优先神经替代外显子进行试点筛选,并识别这些外显子
根据神经形态学分析进行此筛选对于轴突生长很重要。
由于缺乏可靠的报告基因,我们提出了一种从 mES 细胞群中衍生克隆突变体的策略
这些带有个体突变的克隆系将被以高通量形式转导。
受并行神经分化、高通量成像和表型分析的影响。
将允许灵敏地检测在轴突生长中表现出精细形态缺陷的突变体,这将是
因此,我们的方法将结合可扩展性和可扩展性的优势。
这项研究将建立一种非常有效的方法,将我们对基因功能的认识扩展到水平。
这种策略可以很容易地用于研究潜在的分子程序。
正常和病理情况下的神经分化、迁移和功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chaolin Zhang其他文献
Chaolin Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chaolin Zhang', 18)}}的其他基金
Mapping proximal and distal splicing-regulatory elements
绘制近端和远端剪接调控元件
- 批准号:
10658516 - 财政年份:2023
- 资助金额:
$ 19.9万 - 项目类别:
Complexity and evolution of splicing-regulatory networks
剪接调控网络的复杂性和演化
- 批准号:
10799138 - 财政年份:2023
- 资助金额:
$ 19.9万 - 项目类别:
Complexity and evolution of splicing-regulatory networks
剪接调控网络的复杂性和演化
- 批准号:
10406411 - 财政年份:2022
- 资助金额:
$ 19.9万 - 项目类别:
Mapping proximal and distal splicing-regulatory elements
绘制近端和远端剪接调控元件
- 批准号:
10669332 - 财政年份:2022
- 资助金额:
$ 19.9万 - 项目类别:
Complexity and evolution of splicing-regulatory networks
剪接调控网络的复杂性和演化
- 批准号:
10706471 - 财政年份:2022
- 资助金额:
$ 19.9万 - 项目类别:
RNA Regulatory Networks in Neuronal Cell Type Diversity and Function
神经元细胞类型多样性和功能中的 RNA 调控网络
- 批准号:
10816681 - 财政年份:2022
- 资助金额:
$ 19.9万 - 项目类别:
RNA regulatory networks in neuronal cell type diversity and function
神经元细胞类型多样性和功能中的 RNA 调控网络
- 批准号:
10342485 - 财政年份:2021
- 资助金额:
$ 19.9万 - 项目类别:
Integrative analysis of tissue-specific alternative splicing regulation under adaptive selection
适应性选择下组织特异性选择性剪接调控的综合分析
- 批准号:
10402926 - 财政年份:2021
- 资助金额:
$ 19.9万 - 项目类别:
RNA Regulatory Networks in Neuronal Cell Type Diversity and Function
神经元细胞类型多样性和功能中的 RNA 调控网络
- 批准号:
10531908 - 财政年份:2021
- 资助金额:
$ 19.9万 - 项目类别:
CLIP Tool Kit (CTK): pipeline, user interface and tutorials for CLIP data analysis
CLIP 工具套件 (CTK):用于 CLIP 数据分析的管道、用户界面和教程
- 批准号:
9294442 - 财政年份:2017
- 资助金额:
$ 19.9万 - 项目类别:
相似国自然基金
Alpha-catenin对视觉经验依赖的放射胶质细胞增殖调控的研究
- 批准号:31701189
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
HIF-1α对IgG免疫复合物诱导巨噬细胞炎症反应的调控作用
- 批准号:31400751
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
阿尔法-突触核蛋白积聚的分子机制及其细胞毒性
- 批准号:30570377
- 批准年份:2005
- 资助金额:8.0 万元
- 项目类别:面上项目
相似海外基金
Using Human iPSC Models to Determine the Mechanism of Inflammation-Induced Disruption of Dopamine Neurotransmission
使用人类 iPSC 模型确定炎症引起的多巴胺神经传递中断的机制
- 批准号:
10575155 - 财政年份:2022
- 资助金额:
$ 19.9万 - 项目类别:
Using Human iPSC Models to Determine the Mechanism of Inflammation-Induced Disruption of Dopamine Neurotransmission
使用人类 iPSC 模型确定炎症引起的多巴胺神经传递中断的机制
- 批准号:
10707196 - 财政年份:2022
- 资助金额:
$ 19.9万 - 项目类别:
Feedback regulation of cannabinoid receptor trafficking and signaling
大麻素受体运输和信号传导的反馈调节
- 批准号:
10312886 - 财政年份:2022
- 资助金额:
$ 19.9万 - 项目类别:
Understanding the link between FAIM expression and Alzheimer’s disease and related dementias
了解 FAIM 表达与阿尔茨海默病及相关痴呆症之间的联系
- 批准号:
10380077 - 财政年份:2021
- 资助金额:
$ 19.9万 - 项目类别:
Understanding the link between FAIM expression and Alzheimer’s disease and related dementias
了解 FAIM 表达与阿尔茨海默病及相关痴呆症之间的联系
- 批准号:
10195947 - 财政年份:2021
- 资助金额:
$ 19.9万 - 项目类别: