Molecular and Neural Mechanisms of Sleep Regulation by TARANIS
TARANIS 睡眠调节的分子和神经机制
基本信息
- 批准号:9385776
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:ActivinsAddressAdultAffectAnatomyArousalBindingBiochemicalBiological ProcessCDC2 Protein KinaseCell Cycle ProgressionCell Cycle ProteinsCellsCyclin ACyclin-Dependent KinasesDataDevelopmentDrosophila genusExhibitsGenesGeneticGenetic ScreeningGenetic TranscriptionGrowthHealthHomeostasisHumanHypothalamic structureInterneuronsLeadMediator of activation proteinMitoticModelingMolecularMutationNeurologicNeuronsPathway interactionsPatientsPhosphotransferasesPolysomnographyPopulationProcessProductivityPropertyProteinsQuality of lifeRecording of previous eventsRegulationRegulatory PathwayReporterRoleSafetySignal TransductionSignaling MoleculeSiteSleepSleep DeprivationSleep DisordersSleep disturbancesSynapsesTechniquesTestingTimeTranscriptTranscriptional RegulationWorkplacearmbasecdc Genescircadian pacemakercognitive functionexperimental studyflyimaging studyin vivoinsightknock-downmutantneural circuitneuromechanismnew therapeutic targetnoveloverexpressionprotein expressionpublic health relevancereconstructionsleep regulation
项目摘要
DESCRIPTION (provided by applicant): Sleep serves essential biological functions, and is conserved from flies to humans. Sleep disturbance is a common health problem that impinges on quality of life, workplace productivity, and public safety. Sleep usually occurs at specific tims of day and lasts for certain amounts of time. These two features of sleep are controlled by distinct molecular mechanisms. Whereas the molecular and anatomical basis of the circadian clock, which controls when we sleep, has been investigated extensively, the molecules and neural circuits underlying sleep homeostasis that regulates sleep duration are not well understood. Identification of novel genes and circuits that control sleep duration would facilitate
elucidation of this mysterious biological process. The Drosophila model for sleep is well suited for discovery of new sleep-modulating genes through unbiased genetic screens. Using a forward-genetic screen for short-sleeping mutants, we isolated a novel sleep gene, taranis (tara). Mutations in tara result in a marked (up to 80%) reduction of sleep duration. [[Importantly tara mutants exhibit decreased levels of REDEYE (RYE), whose expression is regulated by homeostatic sleep drive. Thus isolation of TARA provides an exciting opportunity to investigate the molecular mechanisms underlying sleep homeostasis, a critical process that is poorly understood. Previous findings suggest that TARA and its mammalian homologs are involved in transcriptional regulation and cell cycle progression, and contain a Cyclin A (CycA)-binding homology domain. Notably, CycA, another cell cycle protein, was recently shown to be a sleep-promoting factor, but the molecular function of CycA in sleep is not well understood. Our preliminary studies suggest that TARA promotes sleep by two complementary pathways: 1) by upregulating protein expression of CycA and inhibiting Cdk1 (a Cyclin-dependent kinase that binds CycA and negative regulator of sleep), and 2) by upregulating transcription of dawdle (daw), an Activin-like signaling molecule and positive regulator of sleep. Further, our data identify ~14 CycA expressing cells in the pars lateralis (PL), which is analogous to the mammalian hypothalamus, as a novel sleep center. Building on these preliminary data, we propose to (Aim 1) determine how TARA interacts with other cell cycle proteins to regulate sleep, (Aim 2) how TARA interacts with daw to regulate sleep, and whether DAW acts as a sleep-inducing homeostatic signal, and (Aim 3) determine where and when TARA is required for sleep, and how the PL neurons connect to other sleep centers. The proposed experiments will yield significant mechanistic insights into sleep homeostasis.]]
描述(由申请人提供):睡眠具有重要的生物学功能,从苍蝇到人类都有。睡眠障碍是影响生活质量、工作场所生产力和公共安全的常见健康问题。睡眠的这两个特征是由不同的分子机制控制的,在控制我们睡眠的生物钟的分子和解剖学基础中,睡眠的分子和神经回路得到了特别的研究。调节睡眠持续时间的体内平衡尚不清楚,识别控制睡眠持续时间的新基因和电路将有助于。
果蝇睡眠模型非常适合通过无偏见的遗传筛选发现新的睡眠调节基因,我们利用针对短睡眠突变体的前向遗传筛选,分离出了一种新的睡眠基因——taranis(tara)。 tara 突变导致睡眠持续时间显着缩短(高达 80%)[[重要的是,tara 突变体的 REDEYE (RYE) 表达水平降低。因此,TARA 的分离为研究睡眠稳态的分子机制提供了一个令人兴奋的机会,而此前的研究结果表明,TARA 及其哺乳动物同源物参与了转录调节和细胞周期进程。 ,并含有细胞周期蛋白 A (CycA) 结合同源结构域 值得注意的是,另一种细胞周期蛋白 CycA 最近被证明是一种睡眠促进因子,但 CycA 的分子功能在我们的初步研究表明,TARA 通过两种互补途径促进睡眠:1) 通过上调 CycA 的蛋白表达并抑制 Cdk1(一种结合 CycA 和睡眠负调节因子的细胞周期蛋白依赖性激酶),2) 通过上调 Dawdle(daw)的转录,dawdle 是一种激活素样信号分子和睡眠的正调节因子。此外,我们的数据在外侧部发现了约 14 个表达 CycA 的细胞。 (PL),类似于哺乳动物下丘脑,作为一个新的睡眠中心,基于这些初步数据,我们建议(目标 1)确定 TARA 如何与其他细胞周期蛋白相互作用来调节睡眠,(目标 2)TARA 如何相互作用。与 Daw 相互作用来调节睡眠,以及 DAW 是否充当睡眠诱导稳态信号,以及(目标 3)确定何时何地需要 TARA 进行睡眠,以及 PL 神经元如何连接到其他睡眠所提出的实验将对睡眠稳态产生重要的机制见解。]]
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyunghee Koh其他文献
Kyunghee Koh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kyunghee Koh', 18)}}的其他基金
Sleep induction by repetitive mechanosensory stimulation.
通过重复机械感觉刺激诱导睡眠。
- 批准号:
10608638 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Molecular and Neural Mechanisms of Sleep Regulation by TARANIS
TARANIS 睡眠调节的分子和神经机制
- 批准号:
8962253 - 财政年份:2015
- 资助金额:
$ 3.5万 - 项目类别:
Molecular and Neural Mechanisms of Sleep Regulation by TARANIS
TARANIS 睡眠调节的分子和神经机制
- 批准号:
9276800 - 财政年份:2015
- 资助金额:
$ 3.5万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Role of Activin-like kinase 5 (ALK5) for maintaining microglia and astrocyte homeostasis and activation
激活素样激酶 5 (ALK5) 在维持小胶质细胞和星形胶质细胞稳态和激活中的作用
- 批准号:
10388033 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
The Role of Activin-like kinase 5 (ALK5) for maintaining microglia and astrocyte homeostasis and activation
激活素样激酶 5 (ALK5) 在维持小胶质细胞和星形胶质细胞稳态和激活中的作用
- 批准号:
10839283 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
The function of LIN28B and follistatin in supporting cell reprogramming and hair cell regeneration in the murine cochlea
LIN28B 和卵泡抑素在支持小鼠耳蜗细胞重编程和毛细胞再生中的功能
- 批准号:
10513325 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
The function of LIN28B and follistatin in supporting cell reprogramming and hair cell regeneration in the murine cochlea
LIN28B 和卵泡抑素在支持小鼠耳蜗细胞重编程和毛细胞再生中的功能
- 批准号:
10366493 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
BMP2/ALKs signaling system in diabetic retinopathy
BMP2/ALKs信号系统在糖尿病视网膜病变中的作用
- 批准号:
10457087 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别: