Strial vascular pathology from acoustic trauma
声损伤引起的心房血管病理学
基本信息
- 批准号:9383753
- 负责人:
- 金额:$ 42.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:Acoustic TraumaAffectAfferent NeuronsAgingAnimalsAuditoryBasement membraneBiologicalBiological PreservationBloodBlood VesselsBlood capillariesBlood flowBrainBromodeoxyuridineCaliberCardiacCardiologyCell LineCellsClinicalCochleaCommunicationConfocal MicroscopyDevelopmentDiseaseEarEdemaElectron MicroscopyEmployee StrikesEndothelial CellsEnergy SupplyExposure toExtravasationFailureFoundationsFunctional disorderGene DeliveryGoalsGrowth FactorHair CellsHealthHearingHearing problemHeartHormonesHumanHypoxiaImmunophenotypingImpairmentIn VitroIndividualInfarctionInjuryKidney DiseasesLabelLabyrinthLateralLeadLifeLigandsLoudnessMaintenanceMediatingMembrane ProteinsMesenchymalMetabolicModelingMolecularMusMyocardial InfarctionMyofibroblastNatural regenerationNeonatalNeuronsNoiseNuclearOrganPDGFA genePathologicPathologyPericytesPhenotypePhysiologyPlatelet-Derived Growth Factor beta ReceptorPopulationProductionProliferatingPropertyProteinsProto-Oncogene Proteins c-sisRecoveryRegulationReporterResearchResidual stateResolutionRetinaRetinalRoleSensorySignal PathwaySignal TransductionSiteSocial isolationSourceStem cellsStressStria VascularisStrokeStructureSudden DeafnessSystemTestingTissuesTransforming Growth Factor betaTransforming Growth FactorsTransgenic MiceTransplantationTraumaVascular DiseasesVascular blood supplyWound Healingangiogenesisbaseblood perfusioncapillarydeafnessdensitydiabetic patientfibrogenesishearing impairmentimprovedinhibitor/antagonistinjuredmatrigelmigrationnetwork modelsneurotrophic factornovelnovel strategiespigment epithelium-derived factorplatelet-derived growth factor BBpreventprotein expressionreceptorrepairedrestorationsoundsuccesstherapeutic target
项目摘要
PROJECT SUMMARY
Energy supply to the ear is critical for hearing function since the ear is one of the highest energy consuming
organs. Insufficient energy can result from insufficient blood flow to the cochlea contributing to a wide range of
clinical hearing disorders such as loud sound-induced hearing loss, hearing loss related to ageing, and sudden
deafness, which can largely impact the quality of human life by causing individual communication problems
and social isolation. We believe that success in repair and regeneration of hearing function following loss of
sensory cells requires parallel restoration or maintenance of an efficient blood supply. The proposed research
is part of a longer range study on the role of pericytes in the physiology of the cochlea, but is specifically
focused on the pericyte pathology that occurs in loud sound-induced lateral wall microcirculatory dysfunction.
Pericytes are multipotent mesenchymal-like cells and are primarily located on microvessels. Normal function of
pericytes is vital for blood flow regulation, vascular integrity, angiogenesis and tissue fibrogenesis. Pericyte
pathology is profoundly associated with many organ diseases such as brain stroke, heart infarction, and retinal
failure. Therapeutic targeting of pericytes has been considered a novel treatment for many of those clinical
diseases. Cochlear pericytes are extremely vulnerable and sensitive to damage, but are critical for regulation
of cochlear blood flow and maintaining tightness of the blood-labyrinth barrier in the stria vascularis. More
specifically they are highly responsive to stress such as acoustic trauma. Upon exposure to loud sound,
cochlear pericytes undergo striking changes in their biological properties, but the molecular mechanisms that
underline those changes have not yet been studied. In this five year proposal, we will determine what
molecular signals lead to loud sound-induced pericyte migration away from the capillaries and their phenotype
changes. We will also determine whether transplantation of fresh pericytes such as neo-pericytes (derived from
neonatal mice) to noise-damaged cochlea can repair loud sound-damaged microvessels and restore vascular
function. The success of each aim will inevitably lead to the development of new protective and restorative
therapies for a normal blood flow to cochlea― the critical foundation of hearing preservation or/and restoration.
项目摘要
耳朵的能源供应对于听力功能至关重要,因为耳朵是最高能量消耗之一
器官。流向耳蜗的血流不足可能导致能量不足,导致了广泛的范围
临床听力障碍,例如声音引起的听力损失,与衰老有关的听力损失和突然
耳聋,可以通过引起个人沟通问题在很大程度上影响人类生活的质量
和社会隔离。我们认为,损失后,修复和听力功能的再生成功
感觉细胞需要并行恢复或维持有效的血液供应。拟议的研究
是关于周细胞在耳蜗生理学中作用的长期研究的一部分,但特别是
专注于周围的病理学,该病理发生在响亮的声音诱导的侧壁微循环功能障碍中。
周细胞是多能间充质样细胞,主要位于微血管上。正常功能
周细胞对血流调节,血管完整性,血管生成和组织纤维发生至关重要。周围
病理学与许多器官疾病(例如脑部,心脏梗塞和视网膜)有着深远的联系
失败。对许多临床的治疗靶向周细胞的治疗靶向已被认为是一种新颖的治疗方法
疾病。人工耳蜗周细胞非常脆弱,对损害敏感,但对于调节至关重要
血管血管血管屏障的血液流量和维持血管血管障碍的紧密度。更多的
在暴露于大声的声音时,它们对诸如声学创伤之类的压力有很高的反应。
人工耳蜗的生物学特性发生了罢工变化,但是分子机制
强调这些变化尚未研究。在这五年的建议中,我们将确定什么
分子信号导致声音诱导的周细胞迁移远离毛细血管及其表型
更改。我们还将确定新鲜周细胞(如新鲜明物)的移植(源自
新生儿小鼠)到噪声损害的耳蜗可以修复大声的声音损坏的微血管并恢复血管
功能。每个目标的成功将不可避免地导致新受保护和恢复的发展
正常血液流向耳蜗的疗法 - 听力保存或恢复的关键基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaorui Shi其他文献
Xiaorui Shi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaorui Shi', 18)}}的其他基金
The effects of cochlear pericytes and pericyte-related vascular pathology on hearing function
耳蜗周细胞及周细胞相关血管病理对听力功能的影响
- 批准号:
10553675 - 财政年份:2020
- 资助金额:
$ 42.54万 - 项目类别:
The effects of cochlear pericytes and pericyte-related vascular pathology on hearing function
耳蜗周细胞及周细胞相关血管病理对听力功能的影响
- 批准号:
10116361 - 财政年份:2020
- 资助金额:
$ 42.54万 - 项目类别:
The effects of cochlear pericytes and pericyte-related vascular pathology on hearing function
耳蜗周细胞及周细胞相关血管病理对听力功能的影响
- 批准号:
10327721 - 财政年份:2020
- 资助金额:
$ 42.54万 - 项目类别:
Strial vascular pathology from acoustic trauma
声损伤引起的心房血管病理学
- 批准号:
10174903 - 财政年份:2017
- 资助金额:
$ 42.54万 - 项目类别:
Perivascular macrophages endothelial interactions at the blood labyrinth barrier
血管周围巨噬细胞在血迷路屏障处的内皮相互作用
- 批准号:
8500225 - 财政年份:2012
- 资助金额:
$ 42.54万 - 项目类别:
Perivascular macrophages endothelial interactions at the blood labyrinth barrier
血管周围巨噬细胞在血迷路屏障处的内皮相互作用
- 批准号:
8386152 - 财政年份:2012
- 资助金额:
$ 42.54万 - 项目类别:
Fibrovascular coupling in the cochlea and pericyte recruitment after noise
噪声后耳蜗中的纤维血管耦合和周细胞募集
- 批准号:
8079462 - 财政年份:2010
- 资助金额:
$ 42.54万 - 项目类别:
Fibrovascular coupling in the cochlea and pericyte recruitment after noise
噪声后耳蜗中的纤维血管耦合和周细胞募集
- 批准号:
8664362 - 财政年份:2010
- 资助金额:
$ 42.54万 - 项目类别:
Fibrovascular coupling in the cochlea and pericyte recruitment after noise
噪声后耳蜗中的纤维血管耦合和周细胞募集
- 批准号:
8471544 - 财政年份:2010
- 资助金额:
$ 42.54万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Shedding light on balance: Interrogating individual synapses within vestibular epithelia
阐明平衡:询问前庭上皮内的单个突触
- 批准号:
10593864 - 财政年份:2023
- 资助金额:
$ 42.54万 - 项目类别:
Neurobiology and Behavioral Consequences of Peripheral Vestibular Synaptopathy andRehabilitation
周围前庭突触病的神经生物学和行为后果及康复
- 批准号:
10316028 - 财政年份:2021
- 资助金额:
$ 42.54万 - 项目类别:
Neurobiology and Behavioral Consequences of Peripheral Vestibular Synaptopathy andRehabilitation
周围前庭突触病的神经生物学和行为后果及康复
- 批准号:
10539243 - 财政年份:2021
- 资助金额:
$ 42.54万 - 项目类别:
Morphological and Molecular Development of Efferent Innervation of the Cochlea
耳蜗传出神经支配的形态和分子发育
- 批准号:
10066467 - 财政年份:2020
- 资助金额:
$ 42.54万 - 项目类别:
Morphological and Molecular Development of Efferent Innervation of the Cochlea
耳蜗传出神经支配的形态和分子发育
- 批准号:
10409742 - 财政年份:2020
- 资助金额:
$ 42.54万 - 项目类别: