Molecular Mechanisms of Synaptic G Protein-Coupled Receptors
突触G蛋白偶联受体的分子机制
基本信息
- 批准号:9381245
- 负责人:
- 金额:$ 40.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AreaBiophysicsCouplingDimerizationDiseaseDrug TargetingEnergy TransferEnvironmentG-Protein-Coupled ReceptorsGABA ReceptorGTP-Binding Protein alpha Subunits, GsGTP-Binding ProteinsGlutamatesGoalsHealthHippocampus (Brain)KineticsLeadLigand BindingLigand Binding DomainLigandsLinkLong-Term DepressionMeasurementMeasuresMembraneMental disordersMetabotropic Glutamate ReceptorsMethodsMolecularMolecular ConformationMotionNervous system structureNeurotransmittersOptical MethodsOpticsPatternPharmacologyPopulationProcessReceptor ActivationReporterResearchRhodopsinRoleSignal TransductionSpecificitySynapsesSynaptic TransmissionTransmembrane DomainWorkbeta-adrenergic receptorbiological systemsdesensitizationdetectordimerextracellularglutamatergic signalingimprovedinsightnervous system disorderneuronal excitabilityneurotransmitter releaseoptical sensoroptogeneticsprotein activationreceptorresponsesingle moleculespatiotemporal
项目摘要
Project Summary
In many biological systems G protein-coupled receptors (GPCRs) provide a crucial molecular link between the dynamics
of the extracellular environment and the associated intracellular signaling response. In the nervous system, GPCRs serve as
detectors of precise patterns of neurotransmitter release and are able to, in turn, modulate neuronal excitability and synaptic
transmission. Of particular importance are the class C metabotropic glutamate (mGluR) and GABA receptors (GABABR), which
respond to the major excitatory and inhibitory neurotransmitters, respectively, and serve as drug targets for neurological and
psychiatric disorders. Unfortunately, our understanding of their underlying molecular mechanisms of signaling remain limited
due to a lack of methods for the direct measurement and manipulation of their activity with high specificity and spatial and
temporal precision. Furthermore, the biophysical activation mechanism of class C GPCRs is particularly challenging to decipher
because unlike class A GPCRs, such as rhodopsin or ß-adrenergic receptors, they contain large, extracellular ligand binding
domains (LBDs) that multimerize and couple, via a poorly understood mechanism, to a transmembrane domain (TMD).
Our recent work has established new optical methods for directly measuring mGluR assembly and conformational
dynamics at the single molecule level and has also produced an optogenetic method to manipulate receptors with subtype
selectivity and high spatiotemporal precision using photoswitchable tethered ligands. These breakthroughs have advanced our
understanding of how mGluRs dimerize and the initial molecular motions that lead to cooperative receptor activation, but many
fundamental questions remain. In research area 1 we will dissect the activation mechanism of mGluRs and GABABRs in
a quantitative, interdisciplinary way using optical approaches, including single molecule Forster resonance energy
transfer (FRET) to measure conformational dynamics, in conjunction with functional reporters and detailed structural
analysis. The long-term goal is to understand, biophysically, how allosteric inter-domain and inter-subunit coupling interactions
permit orthosteric and allosteric ligand binding to produce G protein activation. This work will give major insight into the
fundamental activation processes of a large class of membrane receptors and should provide a deeper understanding of their
molecular pharmacology. In research area 2 we will improve and harness the power of optical sensors of activation and
optogenetic control of receptors to probe the kinetics of different mGluR subtypes at the level of activation, signaling,
and desensitization and to dissect their spatiotemporal signaling profiles at hippocampal synapses. In the long term
we plan to use this information to probe the mechanism of induction of long-term depression by pre-synaptic, post-synaptic,
and glial mGluR populations. This work will provide a dynamic picture of mGluR signaling that has been missing from the field
and will strengthen our molecular understanding of the role of these receptors in synaptic modulation in health and disease.
项目摘要
在许多生物系统中,G蛋白偶联受体(GPCR)在动力学之间提供了至关重要的分子联系
细胞外环境和相关的细胞内信号反应。在神经系统中,GPCR作为
神经递质释放精确模式的检测器,并能够调节神经元令人兴奋和突触
传播。特别重要的是C类代替谷氨酸(MGLUR)和GABA受体(GABABR)
分别应对主要兴奋和抑制性神经递质,并作为神经系统和
精神疾病。不幸的是,我们对信号传导的潜在分子机制的理解仍然有限
由于缺乏直接测量和操纵其活动的方法,以高特异性和空间和
临时精度。此外,C类GPCR的生物物理激活机制对于破译特别具有挑战性
因为与A类GPCR(例如Rhodopsin或β-肾上腺素受体不同,它们都包含大的细胞外配体结合
通过较少了解的机制,将多种型和夫妇跨到跨膜结构域(TMD)的域(LBD)。
我们最近的工作已经建立了新的光学方法,用于直接测量MGLUR组装和构象
单分子水平的动力学,还产生了一种以亚型操纵接收器的光遗传学方法
选择性和高空间时间精度使用可拍照的绑线配体。这些突破已经提高了我们的
了解MGLURS如何二聚和导致合作受体激活的初始分子运动,但许多
仍然存在基本问题。在研究区域1中,我们将剖析mglurs和gababrs的激活机制
使用光学方法的定量,跨学科的方式,包括单分子福斯特共振能
转移(FRET)与功能记者结合使用和详细的结构,以测量构象动力学
分析。长期的目标是从生物物理上理解变构间和增生耦合相互作用
允许定位和变构的配体结合以产生G蛋白激活。这项工作将使人们对
大量膜接收器的基本激活过程,应更深入地了解其
分子药理学。在研究区域2中,我们将改善和利用激活和激活传感器的力量
对受体的光遗传控制,以探测不同mglur亚型的动力学,在激活,信号,信号,
并脱敏并在海马突触上剖析其时空信号传导曲线。长期
我们计划使用此信息来探测引入长期抑郁症的机理,这突触前,突触后,
和胶质mglur种群。这项工作将提供动态的MGLUR信号传导的动态图片
并将加强我们对这些受体在健康和疾病中突触调节中的作用的分子理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Levitz其他文献
Joshua Levitz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Levitz', 18)}}的其他基金
Mechanisms of Regulation of Metabotropic Glutamate Receptors
代谢型谷氨酸受体的调节机制
- 批准号:
10660420 - 财政年份:2023
- 资助金额:
$ 40.86万 - 项目类别:
Photopharmacological interrogation of presynaptic neuromodulation of cortico-amygdalar circuits
皮质杏仁核回路突触前神经调节的光药理学研究
- 批准号:
10666359 - 财政年份:2022
- 资助金额:
$ 40.86万 - 项目类别:
Molecular Mechanisms, Modulation, and Synaptic Organization of Kainate Receptors
红藻氨酸受体的分子机制、调节和突触组织
- 批准号:
10417222 - 财政年份:2021
- 资助金额:
$ 40.86万 - 项目类别:
Genetically-Targeted Photo-Pharmacology for Native Opioid Receptors
天然阿片受体的基因靶向光药理学
- 批准号:
10790584 - 财政年份:2020
- 资助金额:
$ 40.86万 - 项目类别:
Genetically-Targeted Photo-Pharmacology for Native Opioid Receptors
天然阿片受体的基因靶向光药理学
- 批准号:
10397653 - 财政年份:2020
- 资助金额:
$ 40.86万 - 项目类别:
Genetically-Targeted Photo-Pharmacology for Native Opioid Receptors
天然阿片受体的基因靶向光药理学
- 批准号:
10044309 - 财政年份:2020
- 资助金额:
$ 40.86万 - 项目类别:
Molecular Mechanisms of Synaptic G Protein-Coupled Receptors
突触G蛋白偶联受体的分子机制
- 批准号:
10166865 - 财政年份:2017
- 资助金额:
$ 40.86万 - 项目类别:
Molecular Mechanisms of Synaptic G Protein-Coupled Receptors
突触G蛋白偶联受体的分子机制
- 批准号:
9925838 - 财政年份:2017
- 资助金额:
$ 40.86万 - 项目类别:
相似国自然基金
crRNA-Cas12a复合体识别与切割靶DNA分子机制的单分子生物物理学研究
- 批准号:31900884
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大肠杆菌K-12对葡萄糖的运动动力学响应及机制研究
- 批准号:11804072
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
流感病毒感染引起气道液体生物物理学特性改变及相关机制的研究
- 批准号:81670010
- 批准年份:2016
- 资助金额:57.0 万元
- 项目类别:面上项目
与肿瘤相关的DNA甲基化和组蛋白修饰数据的分析与研究
- 批准号:31460234
- 批准年份:2014
- 资助金额:50.0 万元
- 项目类别:地区科学基金项目
人脐动脉内皮细胞纳米低温保存过程的实验研究与模型建立
- 批准号:51276179
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
2023 Muscle: Excitation-Contraction Coupling Gordon Research Conference and Gordon Research Seminar
2023肌肉:兴奋-收缩耦合戈登研究会议暨戈登研究研讨会
- 批准号:
10606049 - 财政年份:2023
- 资助金额:
$ 40.86万 - 项目类别:
Arrhythmia Mechanisms Modulated by Intercalated Disc Extracellular Nanodomains
闰盘细胞外纳米结构域调节心律失常的机制
- 批准号:
10668025 - 财政年份:2023
- 资助金额:
$ 40.86万 - 项目类别:
Network dynamics of sleep-wake states in epilepsy
癫痫睡眠-觉醒状态的网络动力学
- 批准号:
10591896 - 财政年份:2023
- 资助金额:
$ 40.86万 - 项目类别:
Functional Protein Conformations and Dynamics via Transparent Window 1D & 2D Infrared Spectroscopy
通过透明窗口 1D 观察功能性蛋白质构象和动力学
- 批准号:
10552386 - 财政年份:2023
- 资助金额:
$ 40.86万 - 项目类别:
Structural and functional characterization of synaptic adhesion GPCR ADGRB3 binding interactions
突触粘附 GPCR ADGRB3 结合相互作用的结构和功能表征
- 批准号:
10667204 - 财政年份:2023
- 资助金额:
$ 40.86万 - 项目类别: