Directing Collective Epithelial Morphology in Space and Time Using a Light-Based Carving Tool
使用基于光的雕刻工具指导空间和时间上的集体上皮形态
基本信息
- 批准号:9809041
- 负责人:
- 金额:$ 15.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAblationAcinus organ componentAcuteAffectAgingArchitectureAutoimmune ResponsesBasement membraneBiologicalBiomanufacturingCaliberCell Culture TechniquesCell ProliferationCell SizeCell SurvivalCellsCellular MorphologyCellular SpheroidsCessation of lifeClinicalCoculture TechniquesComplexConnective TissueCrosslinkerCuesDental CareDental cariesDepositionDevelopmentDiseaseDuct (organ) structureDuctalElementsEncapsulatedEngineeringEpithelialEpitopesEtiologyExtracellular MatrixFaceFeasibility StudiesFibroblastsFinancial HardshipFutureGelGlandGoalsGrantGrowthGrowth FactorHarvestHead and Neck CancerHumanHyaluronic AcidHydrogelsIn VitroIntegrinsLaboratoriesLasersLengthLigandsLightMajor salivary gland structureMapsMatrix MetalloproteinasesMembrane ProteinsMesenchymalMethodsMicroscopyMorphologyMyoepithelialNeuronsNeurotransmitter ReceptorNeurotransmittersOral healthOrganPainPalliative CarePathway interactionsPatientsPatternPeptide Signal SequencesPhenotypePhysicsPilot ProjectsPolymersPorosityPositioning AttributePrintingProliferatingQuality of lifeRadialRadiation induced damageRadiation therapyRegenerative MedicineResolutionSalivarySalivary Gland TissueSalivary GlandsShapesSignal TransductionSjogren&aposs SyndromeSourceStem cellsStructureStudy modelsSyringesSystemTechnologyTestingTherapeuticTimeTissue EngineeringTissuesTravelVariantWorkXerostomiaabsorptionbasebiomaterial compatibilitybioprintingcell growthcell motilitycell typecostcrosslinkimplantable deviceimplantationimprovedlithographymigrationmonolayernew technologynovelprogenitorprototypereconstitutionreduce symptomsregenerative therapyresponsesalivary acinar cellsalivary assaysalivary cellstandard of carestemtemporal measurementthree dimensional cell culturetime usetooltwo-photon
项目摘要
Project Summary:
Xerostomia, or “dry mouth”, is a challenging clinical condition, caused by damage to the cells of the salivary
gland. It may result from a variety of tissue insults, including acute damage from radiation therapy for head and
neck cancers, progressive auto-immune response in Sjogren’s disease, or other unknown etiology from aging.
Current treatments offer only temporary relief of symptoms, and poor resolution of associated oral health
decay. The cost of this condition is considerable, both in quality of life and the financial burden of increased
dental care. The fields of tissue engineering and regenerative medicine offer many tools for the potential
reconstitution of healthy salivary-derived cells within supportive hydrogel matrices, but few of these options
provide sufficient spatial and temporal resolution to restore the complex branched structure and precise spatial
phenotype map of the major salivary glands. However, new discoveries in laser-based hydrogel degradation
(LBHD) can be used to “carve” pathways through intact hydrogel slabs, with pinpoint, subcellular resolution in
xyz, and offer a method to guide a growing salivary epithelial bud in 3 dimensions. Our hypothesis for the
present proposal is that we can use multiphoton-based LBHD to elongate a multicellular cluster in a given
direction, and recreate key elements of the native gland. To do this, we will employ our laboratory’s expertise in
isolation of primary human salivary-derived stem/progenitor cells (hS/PCs) from healthy tissues, and
encapsulation as responsive 3D multicellular spheroid clusters within customizable, biocompatible hyaluronic
acid (HA) hydrogels. Our ongoing work has shown that, by tailoring the porosity of these hydrogels and their
concentration of bioactive epitopes, we can impact cluster size, morphology, and interaction with the
surrounding extracellular matrix. We will test our hypothesis through the following Specific Aims:
Aim 1. Establish parameters to carve “tunnels” through HA hydrogels and promote HS/PC cluster ingrowth.
Aim 2. Adapt the system to alternate matrices that enable fibroblast co-culture, or incorporate photolabile
crosslinkers for easier fabrication. Aim 3. Assess phenotype of the growing cluster, at its trailing and leading
edges and branched termini, for signs of differentiated phenotype. If successful, this system could serve as a
useful model for studying mechanisms of human salivary cell organization and differentiation; the system might
also be an early prototype for manufacturing tissue engineered gland replacements. The R03 mechanism will
provide support for the necessary pilot and feasibility studies, to demonstrate that these proven technologies
can be combined to produce a novel platform.
项目概要:
口干症或“口干”是一种具有挑战性的临床病症,由唾液细胞损伤引起
它可能是由多种组织损伤引起的,包括头部和颈部放射治疗造成的急性损伤。
颈部癌症、干燥病的进行性自身免疫反应或其他未知的衰老病因。
目前的治疗方法只能暂时缓解症状,并且无法解决相关的口腔健康问题
这种情况的代价是相当大的,无论是生活质量还是经济负担的增加。
牙科护理领域为发挥潜力提供了许多工具。
在支持性水凝胶基质中重建健康的唾液来源的细胞,但这些选择很少
提供足够的空间和时间分辨率来恢复复杂的分支结构和精确的空间
然而,基于激光的水凝胶降解的新发现。
(LBHD)可用于通过完整的水凝胶板“雕刻”路径,并具有精确的亚细胞分辨率
xyz,并提供了一种在 3 个维度上引导唾液上皮芽生长的方法。
目前的建议是,我们可以使用基于多光子的 LBHD 来延长给定的多细胞簇
为此,我们将利用我们实验室的专业知识。
从健康组织中分离原代人类唾液干细胞/祖细胞 (hS/PC),以及
封装为可定制的、生物相容性透明质酸中的响应性 3D 多细胞球体簇
我们正在进行的工作表明,通过调整这些水凝胶及其孔隙率。
生物活性表位的浓度,我们可以影响簇的大小、形态以及与
我们将通过以下具体目标来检验我们的假设:
目标 1. 建立参数以通过 HA 水凝胶雕刻“隧道”并促进 HS/PC 簇向内生长。
目标 2. 使系统适应替代基质,以实现成纤维细胞共培养,或纳入不稳定性光
目标 3. 评估生长簇的表型(尾随和前导)。
边缘和分支末端,用于区分表型的迹象如果成功,该系统可以作为一个。
该系统可能是研究人类唾液细胞组织和分化机制的有用模型;
R03 机制也将成为制造组织工程腺体替代品的早期原型。
为必要的试点和可行性研究提供支持,以证明这些经过验证的技术
可以组合起来产生一个新颖的平台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel A Harrington其他文献
Daniel A Harrington的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel A Harrington', 18)}}的其他基金
相似国自然基金
典型草原不同退化类型雪水消融过程水分转换效率研究
- 批准号:32360295
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声混合深度神经网络对PIMSRA心肌热消融边界的实时可视化与识别研究
- 批准号:82302204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
“ROS响应开关”靶向脂质体减少心脏射频消融术后电传导恢复的研究
- 批准号:82370318
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
消融热效应下肝癌超级增强子驱动的DNAJB1与cIAP2互作对中性粒细胞胞外诱捕网(NETs)形成的作用及机制探究
- 批准号:82302319
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Inflammation And Submucosal Glands During Esophageal Injury And Repair
食管损伤和修复过程中的炎症和粘膜下腺
- 批准号:
10713940 - 财政年份:2023
- 资助金额:
$ 15.4万 - 项目类别:
Loss of the Exocrine Pancreas Improves Glucose Tolerance and Insulin Secretion
外分泌胰腺的丧失可改善葡萄糖耐量和胰岛素分泌
- 批准号:
10675473 - 财政年份:2022
- 资助金额:
$ 15.4万 - 项目类别:
Defining the role of respiratory gland patterning in rhinosinusitis
定义呼吸腺模式在鼻窦炎中的作用
- 批准号:
10680552 - 财政年份:2022
- 资助金额:
$ 15.4万 - 项目类别:
Loss of the Exocrine Pancreas Improves Glucose Tolerance and Insulin Secretion
外分泌胰腺的丧失可改善葡萄糖耐量和胰岛素分泌
- 批准号:
10449695 - 财政年份:2022
- 资助金额:
$ 15.4万 - 项目类别:
Defining the role of respiratory gland patterning in rhinosinusitis
定义呼吸腺模式在鼻窦炎中的作用
- 批准号:
10556904 - 财政年份:2022
- 资助金额:
$ 15.4万 - 项目类别: