Aptamer-Enabled Modification of Bacteriophage Host Range
噬菌体宿主范围的适体修饰
基本信息
- 批准号:9802755
- 负责人:
- 金额:$ 23.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAntibiotic ResistanceAntibiotic TherapyAntibioticsBacteriaBacterial Antibiotic ResistanceBacterial InfectionsBacteriophage T4BacteriophagesBindingBinding ProteinsBiological AssayBiological ModelsBypassCapsidCell surfaceCellsCessation of lifeCharacteristicsChemicalsClinical ResearchCollectionConsciousCouplingCryoelectron MicroscopyDNADNA ShufflingDevelopmentElectron MicroscopyEscherichia coliFaceFailureFiberGenomeGenomic DNAGoalsImageryIncentivesIndividualInfectionIntellectual PropertyKnock-outLipopolysaccharidesMaintenanceMethodsMicroscopyModificationMolecular ConformationMorphologyMotionNatureOmpC proteinPeriodicityPhage ReceptorsPharmacologic SubstancePharmacologyPlaguePreparationProcessPropertyProteinsProtocols documentationPublic HealthRNAResearchResistanceResourcesRibonucleasesSafetySchemeSecureSeriesSignal TransductionSpecificitySuperbugSurfaceSystemTailTestingTherapeuticThyroxine ReceptorsTimeUncertaintyUnited States National Institutes of HealthUntranslated RNAUpdateVirionVirusX-Ray Crystallographyaptamerbactericidebasecombatcostdesigndrug discoveryexperienceexperimental studyimprovedinnovationmacromoleculemicrobiotamimicrymolecular scalenanoscalenovel therapeuticsoperationparticlepathogenic bacteriapeerpreclinical studyprophylacticreceptorreceptor bindingresearch and developmentresponsetargeted treatmentweapons
项目摘要
Project Summary
The term “superbug” conjures up in public consciousness the imagery of nasty bacteria recalcitrant to
antibiotic treatments, a public health threat further heightened by the dwindling supply of new antibiotics in the
development pipeline. Imprudent use of broad-spectrum antibiotics is also harmful to the beneficial microbiota.
With the renewed urgency, the US National Institutes of Health listed phage therapy as one of seven prongs in
its plan to combat antibiotic resistance. Bacteriophages (phages) are viruses that only infect and kill bacteria.
Phage therapy is the targeted application of phages as bactericidal agent to treat bacterial infections. However,
to better respond to emerging and evolving bacterial pathogens, all therapeutic and prophylactic phage
products will require periodic updates, which will inevitably incur further cost in product maintenance. The
unpatentability of “product of nature” further reduces incentives for commercial entities to participate in the
research and development (R&D) to realize the full potential of phage therapy.
Here we propose an innovative approach to bypass the required updates that can plague the
conventional whole-phage products, and at the same time provide an incentive for R&D with an intellectual
property that is easily securable and defendable. Our proposal is made possible by recent studies, revealing
intricate steps involved in host recognition by a phage and how the signal of recognition is able to trigger the
preprogrammed conformational changes in the phage tail that eventually leads to the delivery of phage DNA
genome into the infected bacterial cell, thus killing it. We take advantages of the extensively studied classics,
T4 and T7, and their host, Escherichia coli, as the model system to test the hypothesis that an artificially
tethered phage can be triggered to deliver its DNA genome into a non-host cell.
In this scheme, phage tethering is achieved by chemically stable RNA aptamers that specifically bind to
the phage tail fiber, the receptor-binding protein of the phage, and those that bind to the surface
macromolecules of E. coli. By coupling together these two types of aptamers, we can bring a phage to close
physical proximity of the cell surface, a pre-requisite for a successful infection. Based on the hypothesis, the
Brownian motion, experienced by an attached phage, will trigger the preprogrammed deployment of the
proteins involved in phage tail such that the DNA genome can be delivered. We will use the well-established
molecular breeding process, called SELEX, to generate the required aptamers.
Our proposed study represents a unique solution to the problems—especially the scalability and the
patentability—encountered by using phage as a therapeutic and prophylactic agent against bacterial infection.
If the result is encouraging from this proof-of-concept study, we believe we will be able to open an entirely new
and impactful revenue of research.
项目摘要
一词“超级细菌”一词在公共意识中引起了讨厌的细菌的形象,
抗生素治疗是一种公共卫生威胁,这是由于新的抗生素的供应不断增长
发展管道。广谱抗生素的不当使用也对有益的微生物群也有害。
随着新的紧迫性,美国国立卫生研究院将噬菌体疗法列为
它打击抗生素耐药性的计划。噬菌体(噬菌体)是仅感染并杀死细菌的病毒。
噬菌体治疗是噬菌体作为细菌感染的细菌剂的靶向应用。然而,
为了更好地应对新兴和进化的细菌病原体,所有治疗和预防性噬菌体
产品将需要定期更新,这将不可避免地产生产品维护的进一步成本。
“自然产品”的不遵守性进一步减少了商业实体参与的激励措施
研发(R&D),以实现噬菌体疗法的全部潜力。
在这里,我们提出了一种创新的方法,以绕过可能困扰的所需更新
传统的全境产品,同时为R&D提供了一种诱因
易于确保和防御的财产。最近的研究使我们的建议成为可能
通过噬菌体涉及主机识别的复杂步骤,以及识别信号如何触发
噬菌体尾巴的预编程会议变化有时会导致噬菌体DNA的递送
基因组进入被感染的细菌细胞,从而杀死它。我们利用广泛研究的经典,
T4和T7及其宿主Escherichia Coli,作为测试人为假设的模型系统
可以触发束缚噬菌体将其DNA基因组传递到非宿主细胞中。
在该方案中,噬菌体束缚是通过专门结合的化学稳定RNA适体实现的
噬菌体尾纤维,噬菌体的接收器结合蛋白以及与表面结合的蛋白
大肠杆菌的大分子。通过将这两种类型的适体耦合在一起,我们可以使噬菌体关闭
细胞表面的物理接近,这是成功感染的先决条件。基于假设
布朗尼运动是由附带的噬菌体经历的,将触发预编程的部署
参与噬菌体尾巴的蛋白质可以传递DNA基因组。我们将使用良好的
分子繁殖过程称为SELEX,以生成所需的适体。
我们提出的研究代表了解决问题的独特解决方案,尤其是可伸缩性和
可专利性 - 通过将噬菌体用作针对细菌感染的治疗和预防剂。
如果结果在这项概念证明的研究中令人鼓舞,我们相信我们将能够打开一个全新的
和有影响力的研究收入。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hua Shi其他文献
Hua Shi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于高通量测序和培养组学的伴侣动物-人抗生素抗性基因分布特征及传播研究
- 批准号:82373646
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
手性酰胺类农药污染的农业土壤中抗生素抗性基因传播扩散的对映选择性机制
- 批准号:42377238
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
猪粪水热炭对红壤-蔬菜系统中抗生素抗性基因的风险控制及其机理
- 批准号:42307038
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蚯蚓-菌根协同消减抗生素抗性基因的微生物驱动机制
- 批准号:32301448
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物炭对厌氧膜生物反应器抑制畜禽养殖废水中抗生素抗性基因的调控作用和机制
- 批准号:52300210
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
- 批准号:
10653587 - 财政年份:2023
- 资助金额:
$ 23.18万 - 项目类别:
Novel, Targeted Method for Bacteriophage Purification
噬菌体纯化的新型靶向方法
- 批准号:
10698983 - 财政年份:2023
- 资助金额:
$ 23.18万 - 项目类别:
Structural and functional characterization of glycosyltransferases in the Campylobacter concisus N-linked glycoconjugate biosynthetic pathway
弯曲杆菌 N 连接糖复合物生物合成途径中糖基转移酶的结构和功能表征
- 批准号:
10607139 - 财政年份:2023
- 资助金额:
$ 23.18万 - 项目类别:
FimH-Targeting Antibody-Recruiting Molecules as Novel Drugs for Preventing Complicated Urinary Tract Infections
FimH 靶向抗体招募分子作为预防复杂性尿路感染的新药
- 批准号:
10603693 - 财政年份:2023
- 资助金额:
$ 23.18万 - 项目类别:
Monoclonal Antibody to Combat Pseudomonas Aeruginosa
对抗铜绿假单胞菌的单克隆抗体
- 批准号:
10674274 - 财政年份:2023
- 资助金额:
$ 23.18万 - 项目类别: