Quantitative Imaging and Analysis of Bacterial Biofilms from the Single Cell to the Collective
从单细胞到集体的细菌生物膜的定量成像和分析
基本信息
- 批准号:9803916
- 负责人:
- 金额:$ 20.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-10 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAntibiotic ResistanceBacteriaBacterial ModelBehaviorBiological ModelsBiophysicsCell CommunicationCell DensityCell modelCellsCommunitiesComputer softwareConfocal MicroscopyCustomDevelopmentDevicesDimensionsEngineeringEnvironmentExperimental DesignsExpression ProfilingExtracellular MatrixFiltrationGene ExpressionGene Expression ProfileGene Expression RegulationGenesGeneticGenetic TranscriptionGenomeGoalsGrowthHealthHumanImageImage AnalysisIndividualIndustrializationIndustryInvestigationLeadLiquid substanceLocationMeasurementMeasuresMedicalMedicineMicrobial BiofilmsModelingModernizationMorphologyMutationNatureOpticsOrganizational ChangePositioning AttributeProductionPropertyProteinsReporterResearchSignal TransductionSorting - Cell MovementStructureSurfaceSystemTechnologyThree-Dimensional ImagingTimeTransport ProcessUrsidae FamilyVibrio choleraeWorkantibiotic tolerancebacterial communitybiophysical modelchronic infectionfitnessgenome-widehuman pathogenimprovedindividual responseinsightmutantnoveloptogeneticspathogenic bacteriapeerphotoactivationquantitative imagingquorum sensingself organizationspatiotemporaltooltranscriptome sequencingtranscriptomics
项目摘要
PROJECT ABSTRACT
It is now understood that in their natural environments, bacteria primarily exist in multicellular, surface-bound
communities called biofilms. Biofilms cause major problems in medicine as they are inherently resistant to
antibiotics and cause chronic infections; in industry, biofilms foul surfaces and clog filtration devices. Cells in
biofilms display striking differences from planktonic cells, such as extracellular matrix production, a 1,000-fold
increase in tolerance to antibiotics, and unique gene expression patterns that are specific to particular locations
within the biofilm. Because biofilms are three dimensional, heterogeneous, and rearrange over time,
investigations have been limited to optical studies of biofilm formation when only few cells are present or to gross
characterization of the entire structure. We recently made a research breakthrough: We resolved the individual
cells in living, growing biofilms up to a depth of 30 microns, using customized spinning-disk confocal microscopy,
fluorescent reporters, and automated cell-segmentation software. This is the first time anyone has peered "into"
a biofilm, to watch it develop, cell by cell, in the presence of flow, under conditions that model environmental,
medical, and industrial systems. Thus, we are in a position to use three-dimensional imaging, combined with key
technological advancements they propose to make in photo-activation and optogenetics, to characterize biofilms
from the gene to the genome and from the cell to the collective. Central questions to be addressed for the first
time include how do quorum sensing and genome-wide expression profiles vary in space and time within growing
biofilms? Experimental design and interpretation of measurements will be guided by biophysical modeling. We
will launch the studies with the human pathogen Vibrio cholerae, known for rapid but transient biofilm formation.
Specifically, we will pioneer a comprehensive examination of biofilm formation, development, and signal
transduction from the single-cell to multi-cell levels and in realistic environments that mimic the spatial, temporal,
and physical constraints found in nature. The interdisciplinary work will lead to understanding of gene regulation,
cell-to-cell communication, and the spatial and temporal organization of biofilms, which in turn, dictate the large-
scale features and ecological fitness of these multicellular systems. The proposal is unusually interdisciplinary:
it teams Bassler, a microbiologist who is a leader in quorum sensing and biofilms, with Stone, an engineer whose
focus is imaging, fluid dynamics, and the modeling of transport processes, and Wingreen, a theoretical
biophysicist who models bacterial signaling circuits and biofilm development. The approach of direct imaging,
beyond connecting genetics to biophysics, promises new insights relevant to understanding and manipulating
biofilms with the goal of improving human health.
项目摘要
现在人们知道,在自然环境中,细菌主要以多细胞、表面结合的形式存在。
称为生物膜的群落。生物膜在医学上造成重大问题,因为它们具有固有的抗性
抗生素并引起慢性感染;在工业中,生物膜会污染表面并堵塞过滤装置。细胞在
生物膜与浮游细胞表现出显着差异,例如细胞外基质的产生,是浮游细胞的 1,000 倍
对抗生素的耐受性增加,以及特定位置特有的独特基因表达模式
生物膜内。因为生物膜是三维的、异质的,并且会随着时间的推移而重新排列,
研究仅限于生物膜形成的光学研究,当只存在很少的细胞或粗略的细胞时
整个结构的表征。我们最近取得了一项研究突破:我们解决了个体
使用定制的转盘共聚焦显微镜观察活体生长的生物膜中的细胞,深度可达 30 微米,
荧光报告基因和自动细胞分割软件。这是第一次有人“窥视”
生物膜,在流动的情况下,在模拟环境的条件下,观察它逐个细胞的发育,
医疗和工业系统。因此,我们可以使用三维成像,结合关键
他们建议在光激活和光遗传学方面取得技术进步,以表征生物膜
从基因到基因组,从细胞到集体。首先要解决的核心问题
时间包括群体感应和全基因组表达谱在生长过程中如何随空间和时间变化
生物膜?实验设计和测量结果的解释将由生物物理模型指导。我们
将启动针对人类病原体霍乱弧菌的研究,霍乱弧菌以快速但短暂的生物膜形成而闻名。
具体来说,我们将率先对生物膜的形成、发展和信号进行全面检查
从单细胞水平到多细胞水平的转导,以及在模拟空间、时间、
以及自然界中发现的物理限制。跨学科的工作将导致对基因调控的理解,
细胞间的通讯,以及生物膜的空间和时间组织,这反过来又决定了大
这些多细胞系统的规模特征和生态适应性。该提案异常跨学科:
该团队由微生物学家巴斯勒 (Bassler) 和工程师斯通 (Stone) 组成,巴斯勒是群体感应和生物膜领域的领军人物。
重点是成像、流体动力学和运输过程的建模,而 Wingreen 是一位理论研究人员
模拟细菌信号回路和生物膜发育的生物物理学家。直接成像方法,
除了将遗传学与生物物理学联系起来之外,还有望带来与理解和操纵相关的新见解
生物膜以改善人类健康为目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BONNIE L BASSLER其他文献
BONNIE L BASSLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BONNIE L BASSLER', 18)}}的其他基金
Intra- and Inter- Species Communication in Bacteria
细菌的种内和种间通讯
- 批准号:
10305584 - 财政年份:2020
- 资助金额:
$ 20.25万 - 项目类别:
Intra- and Inter- Species Communication in Bacteria
细菌的种内和种间通讯
- 批准号:
9962533 - 财政年份:2020
- 资助金额:
$ 20.25万 - 项目类别:
Intra- and Inter- Species Communication in Bacteria
细菌的种内和种间通讯
- 批准号:
10529304 - 财政年份:2020
- 资助金额:
$ 20.25万 - 项目类别:
A High-Throughput Screen for Modulators of Quorum Sensing in Vibrio cholerae
霍乱弧菌群体感应调制器的高通量筛选
- 批准号:
8136369 - 财政年份:2011
- 资助金额:
$ 20.25万 - 项目类别:
A High-Throughput Screen for LuxS Quorum-Sensing Inhibitors
LuxS 群体感应抑制剂的高通量筛选
- 批准号:
7693093 - 财政年份:2009
- 资助金额:
$ 20.25万 - 项目类别:
2nd ASM Conference on Cell-Cell Communication
第二届 ASM 细胞间通信会议
- 批准号:
6836924 - 财政年份:2004
- 资助金额:
$ 20.25万 - 项目类别:
Intra- and Inter- Species Communication in Bacteria
细菌的种内和种间通讯
- 批准号:
9221339 - 财政年份:2002
- 资助金额:
$ 20.25万 - 项目类别:
相似国自然基金
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
- 批准号:82304313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于吲哚信号分子的低剂量抗生素混合暴露诱导细菌群体耐药性机制及调控
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于质谱的细菌耐药性快速检测和抗生素最小抑菌浓度快速测量
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:
基于低浓度抗生素Hormesis效应的细菌耐药性前体机制及相关阻遏新方法的研究
- 批准号:21976137
- 批准年份:2019
- 资助金额:66 万元
- 项目类别:面上项目
胍基修饰的抗菌高分子与抗生素的协同效应及其对细菌耐药性的影响
- 批准号:81803481
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 20.25万 - 项目类别:
Gatekeeping glycan metabolism in the human gut microbiome
人类肠道微生物组中的聚糖代谢把关
- 批准号:
10737225 - 财政年份:2023
- 资助金额:
$ 20.25万 - 项目类别:
Structural and functional characterization of glycosyltransferases in the Campylobacter concisus N-linked glycoconjugate biosynthetic pathway
弯曲杆菌 N 连接糖复合物生物合成途径中糖基转移酶的结构和功能表征
- 批准号:
10607139 - 财政年份:2023
- 资助金额:
$ 20.25万 - 项目类别:
Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
- 批准号:
10678074 - 财政年份:2023
- 资助金额:
$ 20.25万 - 项目类别: