Statistical methods for large n and p problems
大型 n 和 p 问题的统计方法
基本信息
- 批准号:9134138
- 负责人:
- 金额:$ 6.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-30 至 2017-10-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAgingAlzheimer&aposs disease riskBiologicalBiotechnologyCardiac healthClinicalClinical ResearchCohort StudiesCollectionCommunitiesDataData AnalysesData SetDevelopmentDiffusion Magnetic Resonance ImagingDimensionsEastern Cooperative Oncology GroupElectroencephalographyElectrophysiology (science)FoundationsFrequenciesFunctional Magnetic Resonance ImagingGoalsGrantHome environmentImageIndividualLeadLocationLongitudinal StudiesMagnetic Resonance ImagingMeasurementMeasuresMedicalMethodsModelingObservational StudyPhasePolysomnographyPopulationPrincipal Component AnalysisResearchResearch PersonnelRunningSamplingScanningSeriesSignal TransductionSleepSourceStatistical MethodsStructureTimeValidationVariantVoiceWorkabstractingbaseblindcomputer frameworkdensityindependent component analysismorphometrymultilevel analysisneuroimagingnew technologynext generationnovelpublic health researchresearch studysimulationsuccessterabytetheories
项目摘要
DESCRIPTION (provided by applicant): Abstract Modern observational and experimental biological data has undergone a revolution. Driven by new biotechnology and computing advances, high dimensional, high density, functional multilevel and longitudinal biological signals are becoming commonplace in medical and public health research. These types of signals historically occurred in small clinical or experimental settings, often referred to as the "small n, large p" problem. We view the extension of these biological signals to cohort studies with longitudinal or hierarchical structure as a next generation of biostatistical problems. We've taken to calling this the "hierarchical large n, large p" problem. The goal of this grant is to introduce general methods for analyzing this form of biostatistical data. We propose three major aims for the analysis of multilevel or longitudinally collected biosignals. The first extends multilevel functional principal components, the investigators' generalization of functional principal components, to longitudinal and high dimensional settings. The second considers the investigators bi-directional filtering and extends it in high-dimensional and longitudinal settings. The third considers model-based independent component blind source separation and extends it to longitudinal settings. To solve this aim, we will also consider the fundamental problem of running MCMC samplers for high dimensional parameter spaces. Specifically, no current work exists for convergence control when the number of parameters is larger than the number of iterations. We propose a method of convergence control using finite population sampling. Our methods will be applied to unique data sets involving imaging (MRI, fMRI, DTI), electrophysiology (EEG, ECOG), sleep measurement (polysomnography) and novel measurements of aging (accelerometer). In the preliminary results, we demonstrate our capacity for working with such data with novel findings in the analysis of EEG, MRI and fMRI data sets. Methods such as unsupervised clustering, blind source separation and dimension reduction are generally recognized first steps in analyzing high dimensional data, and have been applied success- fully in an amazingly diverse collection of settings. Our proposal generalizes these basic approaches to high dimensional data while considering hierarchical and longitudinal directions of variation. Hence, our approaches will form a basic foundation for next generation biomedical functional data.
描述(由申请人提供):抽象的现代观察和实验生物学数据已经发生了革命。在新的生物技术和计算进步的驱动下,高维,高密度,功能多级和纵向生物学信号在医学和公共卫生研究中变得司空见惯。这些类型的信号历史上发生在小的临床或实验环境中,通常称为“小N,大P”问题。我们将这些生物信号的扩展为具有纵向或分层结构的队列研究是下一代生物统计问题。我们将其称为“分层大N,大P”问题。该赠款的目的是引入一般方法来分析这种形式的生物统计数据。 我们提出了三个主要目标,以分析多级或纵向收集的生物信号。第一个将多级功能主成分(研究者对功能主组件的概括)扩展到纵向和高维设置。第二个考虑了研究人员双向滤波,并在高维和纵向环境中扩展了它。第三个考虑了基于模型的独立组件盲源分离,并将其扩展到纵向设置。为了解决这个目标,我们还将考虑为高维参数空间运行MCMC采样器的基本问题。具体而言,当参数数量大于迭代次数时,没有目前的收敛控制工作。我们提出了一种使用有限种群抽样的收敛控制方法。 我们的方法将应用于涉及成像(MRI,fMRI,DTI),电生理学(EEG,ECOG),睡眠测量(多性测量)和衰老的新测量(加速度计)的独特数据集。在初步结果中,我们证明了在EEG,MRI和FMRI数据集分析中使用新发现的此类数据的能力。 通常在分析高维数据的方面公认了诸如无监督聚类,盲源分离和降低维度的方法,并已成功地应用于多样化的设置集合中。我们的建议将这些基本方法推广到高维数据的同时,同时考虑了变异的层次结构和纵向方向。因此,我们的方法将构成下一代生物医学功能数据的基本基础。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparing test-retest reliability of dynamic functional connectivity methods.
- DOI:10.1016/j.neuroimage.2017.07.005
- 发表时间:2017-09
- 期刊:
- 影响因子:5.7
- 作者:Choe AS;Nebel MB;Barber AD;Cohen JR;Xu Y;Pekar JJ;Caffo B;Lindquist MA
- 通讯作者:Lindquist MA
A Parcellation Based Nonparametric Algorithm for Independent Component Analysis with Application to fMRI Data.
- DOI:10.3389/fnins.2016.00015
- 发表时间:2016
- 期刊:
- 影响因子:4.3
- 作者:Li S;Chen S;Yue C;Caffo B
- 通讯作者:Caffo B
On tests of activation map dimensionality for fMRI-based studies of learning.
基于功能磁共振成像的学习研究的激活图维数测试。
- DOI:10.3389/fnins.2015.00085
- 发表时间:2015
- 期刊:
- 影响因子:4.3
- 作者:Yang,Juemin;Shmuelof,Lior;Xiao,Luo;Krakauer,JohnW;Caffo,Brian
- 通讯作者:Caffo,Brian
A Semiparametric Approach to Source Separation using Independent Component Analysis.
- DOI:10.1016/j.csda.2012.09.012
- 发表时间:2013-02
- 期刊:
- 影响因子:1.8
- 作者:Eloyan, Ani;Ghosh, Sujit K.
- 通讯作者:Ghosh, Sujit K.
On familywise type I error control for multiplicity in equivalence trials with three or more treatments.
在使用三种或更多治疗的等效试验中,针对家庭类型 I 的多重性误差控制。
- DOI:10.1002/bimj.201100073
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Rohmel,Joachim
- 通讯作者:Rohmel,Joachim
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRIAN Scott CAFFO其他文献
BRIAN Scott CAFFO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRIAN Scott CAFFO', 18)}}的其他基金
Statistical methods for structural and functional integration in multi-modal neuroimaging data
多模态神经影像数据结构和功能整合的统计方法
- 批准号:
10296729 - 财政年份:2021
- 资助金额:
$ 6.04万 - 项目类别:
Statistical methods for structural and functional integration in multi-modal neuroimaging data
多模态神经影像数据结构和功能整合的统计方法
- 批准号:
10445053 - 财政年份:2021
- 资助金额:
$ 6.04万 - 项目类别:
Statistical methods for structural and functional integration in multi-modal neuroimaging data
多模态神经影像数据结构和功能整合的统计方法
- 批准号:
10586155 - 财政年份:2021
- 资助金额:
$ 6.04万 - 项目类别:
Big Data education for the masses: MOOCs, modules, & intelligent tutoring systems
面向大众的大数据教育:MOOC、模块、
- 批准号:
8829370 - 财政年份:2014
- 资助金额:
$ 6.04万 - 项目类别:
Statistical methods for large n and p problems
大型 n 和 p 问题的统计方法
- 批准号:
8513162 - 财政年份:2010
- 资助金额:
$ 6.04万 - 项目类别:
Statistical methods for large n and p problems
大型 n 和 p 问题的统计方法
- 批准号:
8019742 - 财政年份:2010
- 资助金额:
$ 6.04万 - 项目类别:
Statistical methods for large n and p problems
大型 n 和 p 问题的统计方法
- 批准号:
8146107 - 财政年份:2010
- 资助金额:
$ 6.04万 - 项目类别:
Statistical methods for large n and p problems
大型 n 和 p 问题的统计方法
- 批准号:
8728008 - 财政年份:2010
- 资助金额:
$ 6.04万 - 项目类别:
Statistical methods for large n and p problems
大型 n 和 p 问题的统计方法
- 批准号:
8321037 - 财政年份:2010
- 资助金额:
$ 6.04万 - 项目类别:
A mentored training program in quantitative medical imaging
定量医学成像指导培训计划
- 批准号:
7226293 - 财政年份:2006
- 资助金额:
$ 6.04万 - 项目类别:
相似国自然基金
温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
- 批准号:12302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于波动法的叠层橡胶隔震支座老化损伤原位检测及精确评估方法研究
- 批准号:52308322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
东北黑土中农膜源微塑料冻融老化特征及其毒性效应
- 批准号:42377282
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高层建筑外墙保温材料环境暴露自然老化后飞火点燃机理及模型研究
- 批准号:52376132
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Cognitive Health and Modifiable Factors of Daily Sleep and Activities Among Dementia Family Caregivers
痴呆症家庭护理人员的认知健康状况以及日常睡眠和活动的可改变因素
- 批准号:
10643624 - 财政年份:2023
- 资助金额:
$ 6.04万 - 项目类别:
Assessment of Physical Activity for Alzheimer's Disease Research in Down Syndrome
唐氏综合症阿尔茨海默病研究的体力活动评估
- 批准号:
10722771 - 财政年份:2023
- 资助金额:
$ 6.04万 - 项目类别:
Variability and Volume of Day-to-Day Lifestyle Activity in Sustaining Cognitive Function among Insufficiently Active Older Adults at Risk for Alzheimer's Disease and Related Dementias
日常生活方式活动的变异性和活动量对有阿尔茨海默病和相关痴呆风险的活动不足的老年人维持认知功能的影响
- 批准号:
10662088 - 财政年份:2023
- 资助金额:
$ 6.04万 - 项目类别:
Plasma proteomic signatures of physical activity and Alzheimer's disease and related dementias
体力活动和阿尔茨海默氏病及相关痴呆症的血浆蛋白质组特征
- 批准号:
10724140 - 财政年份:2023
- 资助金额:
$ 6.04万 - 项目类别:
Ultra Wideband Fall Detection and Prediction Solution for People Living with Dementia
针对痴呆症患者的超宽带跌倒检测和预测解决方案
- 批准号:
10760690 - 财政年份:2023
- 资助金额:
$ 6.04万 - 项目类别: