COCHLEAR MACROPHAGES AND EPITHELIAL REPAIR
耳蜗巨噬细胞和上皮修复
基本信息
- 批准号:9117865
- 负责人:
- 金额:$ 32.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-12-15 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimalsBacteriaBacterial InfectionsBacterial MeningitisBloodBlood - brain barrier anatomyBlood CirculationBlood VesselsBone remodelingBrainCellsCerebrospinal FluidCicatrixCochleaCochlear ImplantsCochlear implant procedureEnvironmentEpithelialFibrosisFunctional disorderGoalsGrantHealthHearingImmuneImmune responseImmune systemImplantInfectionInfectious AgentInflammationInflammatoryInflammatory ResponseInjuryIonsKnock-outLabyrinthLeadLeftLeukocytesLifeLiquid substanceMaintenanceMeasuresMeningitisMethodsNutrientOrganOsteoclastsOsteogenesisOxygenPatientsPericytesPerilymphPermeabilityPharmaceutical PreparationsPlayProteinsRegulationResearchRoleSamplingSensorySeriesSignal TransductionStreamStreptococcus pneumoniaeTestingTimeTissuesTreatment EffectivenessVascular PermeabilitiesWaterWild Type MouseWorkbonecell typechemokinechemokine receptordeafnessdesignhearing impairmentimprovedinjuredmacrophagemonocytepreventpublic health relevancerepairedresearch studysolutetooltraffickingvascular inflammation
项目摘要
DESCRIPTION (provided by applicant): In the inner ear, the blood vessels that carry oxygen and nutrients to the hearing cells are carefully regulated so that fluids inside the blood vessel d not leak into the tissues of the inner ear. This separation between contents of the blood and contents of the inner ear is called the blood-perilymph barrier. This barrier regulates the immune system and controls the traffic of white blood cells from the blood stream into the organs. When the immune system is activated, white blood cells can leave the vessels, enter the target organ and eliminate harmful bacteria or unwanted cells, but at the same time, it can damage healthy tissues that were not the intended targets. Therefore, careful regulation of this barrier and the immune response are very important. Under certain conditions, when the barrier becomes leaky, fluids and solutes from the blood vessels mix with the inner ear fluids, and this mixing is believed to cause hearing loss, although this has not been proven. In our first series of experiments, we will determine how vessel permeability affects hearing. Our goal is to understand how disruption of this barrier influences hearing levels and how it can be repaired and hearing be retained. Our second series of studies will focus on the role of specific white blood cells that enter the cochlea during meningitis. Meningitis is a life-threatening infection of
the spinal fluid and inner ear fluid where the blood-perilymph barrier and the blood-brain barrier are severely compromised. Meningitis is commonly associated with permanent hearing loss and sometimes with cochlear ossification, where new bone forms in the spaces that are normally fluid-filled. Cochlear ossification is a major concern because cochlear implants, which are our best tool for treating deafness, often cannot be placed when the space for the implant is filled with bone. We believe that the immune response to infection results in this new bone formation and contributes to hearing loss. Although the immune response is essential to eliminate the infection in meningitis, better control of the immune response may result in preserved hearing. If we could prevent the loss of hearing in patients with meningitis and prevent the formation of new bone in the cochlea after meningitis, it would greatly help the well being of people who are affected by this condition. The overall goals of this grant are to improve our understanding of how the immune system interacts with the inner ear environment, what parts of the immune system are beneficial, such as preventing or eliminating infections, and which of its functions might be harmful. Because many current therapies for hearing loss involve the use of medications that suppress the immune system, it is important to understand how the immune system works in the inner ear, to design better medications and improve the effectiveness of treatment for hearing loss.
描述(由申请人提供):在内耳中,将氧气和营养物质输送到听力细胞的血管受到仔细调节,以便血管内的液体不会泄漏到内耳组织中。内耳的血液和内容物称为血液-外淋巴屏障,该屏障调节免疫系统并控制白细胞从血流进入器官的流量。当免疫系统被激活时,白细胞可以离开。船只,进入目标器官并消除有害细菌或不需要的细胞,但同时,它可能会损害非预期目标的健康组织,因此,在某些情况下,当屏障变成时,仔细调节该屏障和免疫反应非常重要。渗漏时,血管中的液体和溶质与内耳液体混合,这种混合被认为会导致听力损失,尽管在我们的第一个系列实验中,我们将确定血管渗透性如何影响我们的听力。目标是了解破坏这一屏障如何影响听力脑膜炎是一种危及生命的感染,我们的第二系列研究将重点关注进入耳蜗的特定白细胞的作用。
脑膜炎通常与永久性听力损失有关,有时还与耳蜗骨化有关,其中通常充满液体的空间会形成新骨。耳蜗骨化是一个主要问题,因为当植入物的空间充满骨骼时,人工耳蜗植入物是我们治疗耳聋的最佳工具,通常无法植入。我们认为,对感染的免疫反应会导致这种情况。尽管免疫反应对于消除脑膜炎感染至关重要,但如果我们能够预防脑膜炎患者的听力损失并防止其形成,则可以更好地控制免疫反应,从而保留听力。脑膜炎后耳蜗中的新骨,这将极大地帮助受这种疾病影响的人的健康。这笔赠款的总体目标是提高我们对免疫系统如何与内耳环境相互作用以及哪些部分相互作用的理解。免疫系统的功能是有益的,例如预防或消除感染,以及其哪些功能可能有害,因为当前许多听力损失的治疗方法都涉及使用抑制免疫系统的药物,因此了解免疫系统在内耳中的工作原理非常重要。更好的药物并提高听力损失治疗的效果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keiko Hirose其他文献
Keiko Hirose的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keiko Hirose', 18)}}的其他基金
Mononuclear phagocyte activi in cochlea acoustic trauma
耳蜗声损伤中的单核吞噬细胞活性
- 批准号:
6987874 - 财政年份:2002
- 资助金额:
$ 32.41万 - 项目类别:
Mononuclear phagocyte activi in cochlea acoustic trauma
耳蜗声损伤中的单核吞噬细胞活性
- 批准号:
7171581 - 财政年份:2002
- 资助金额:
$ 32.41万 - 项目类别:
Mononuclear phagocyte activi in cochlea acoustic trauma
耳蜗声损伤中的单核吞噬细胞活性
- 批准号:
6985110 - 财政年份:2002
- 资助金额:
$ 32.41万 - 项目类别:
Mononuclear phagocyte activi in cochlea acoustic trauma
耳蜗声损伤中的单核吞噬细胞活性
- 批准号:
6687284 - 财政年份:2002
- 资助金额:
$ 32.41万 - 项目类别:
Mononuclear phagocyte activi in cochlea acoustic trauma
耳蜗声损伤中的单核吞噬细胞活性
- 批准号:
7569236 - 财政年份:2002
- 资助金额:
$ 32.41万 - 项目类别:
相似国自然基金
哺乳动物细胞分泌的AI-2信号类似物鉴定及其在宿主-细菌相互作用中的功能研究
- 批准号:32370134
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于口腔灌注种植体周围炎动物模型探索多细菌感染后的宿主免疫反应机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
渭河潜流带无脊椎动物-细菌协同驱动的溶解有机质迁移转化机理研究
- 批准号:42101085
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
海参养殖区丝状绿潮藻、细菌和原生动物群落耦合动力学研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
病原细菌受体激酶ThrK识别动物激素信号的机制
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Infection-Dependent Vulnerabilities of Gram-negative Bacterial Pathogens
革兰氏阴性细菌病原体的感染依赖性脆弱性
- 批准号:
10592676 - 财政年份:2023
- 资助金额:
$ 32.41万 - 项目类别:
A novel, non-antibiotic, microbiome-directed agent to prevent post-surgical infection
一种新型、非抗生素、微生物组导向剂,用于预防术后感染
- 批准号:
10600765 - 财政年份:2023
- 资助金额:
$ 32.41万 - 项目类别:
An Inhaled Microbiome-Targeted Biotherapeutic for Treatment of COPD
一种吸入性微生物组靶向生物治疗药物,用于治疗慢性阻塞性肺病
- 批准号:
10600887 - 财政年份:2023
- 资助金额:
$ 32.41万 - 项目类别:
Facility Management, Maintenance and Operation Core
设施管理、维护和运营核心
- 批准号:
10793828 - 财政年份:2023
- 资助金额:
$ 32.41万 - 项目类别:
Mechanisms of osteocyte induction and regulation of pathogen-induced osteolysis
骨细胞诱导机制和病原体引起的骨溶解的调节
- 批准号:
10648513 - 财政年份:2023
- 资助金额:
$ 32.41万 - 项目类别: