Molecular mechanisms of glycosylation of Cav3.2 channels in pain pathway
疼痛通路中Cav3.2通道糖基化的分子机制
基本信息
- 批准号:9471872
- 负责人:
- 金额:$ 36.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdverse effectsAfferent NeuronsAnimal ModelAnimalsAsparagineAtaxiaAxonCalcium ChannelCanis familiarisCapsaicinCellsCharacteristicsChronic DiseaseClinicalComplicationConstipationCreamDataDevelopmentDiabetes MellitusDiabetic NeuralgiaDiabetic NeuropathiesDiabetic mouseDiseaseDizzinessDrug abuseElectrophysiology (science)EuphoriaFunctional disorderGeneticHumanHyperalgesiaHyperglycemiaImpaired cognitionIn VitroInsulin-Dependent Diabetes MellitusIntractable PainKineticsKnowledgeLeadLeptinLidocaineMeasuresMechanicsMedicalMembraneModalityModelingMolecularMorbid ObesityMusNerveNeuraminidase inhibitorNeuronsNociceptionNociceptorsNon-Insulin-Dependent Diabetes MellitusNumbnessObese MiceOpioidOptical MethodsOralOutcomePainPain managementPathogenesisPathologicPathway interactionsPatientsPeripheralPeripheral NervesPharmaceutical PreparationsPharmacology StudyPhenotypePlayPost-Translational Protein ProcessingPosterior Horn CellsPreparationProtein ConformationProtein IsoformsProtein SecretionProteinsPublic HealthQuality of lifeRecombinantsRegulationRegulatory PathwayReportingResearchRoleSedation procedureSiteSkinSpinal GangliaStimulusStreptozocinSymptomsT-Type Calcium ChannelsTestingTherapeuticTissuesTopical applicationUrinary RetentionVentilatory DepressionWeight GainWild Type MouseWorkaddictionallodyniabiophysical techniqueschronic paincognitive functiondensitydiabeticdiabetic patientdiabetic ratdisabling symptomeffective therapyexperienceextracellulargabapentinganglion cellglycosylationhuman diseasein vivoinnovationmouse modelneuronal cell bodynew therapeutic targetnociceptive responsenovelnovel therapeuticspain sensationpain symptompainful neuropathypatch clamppregabalinprotein transportpublic health relevanceresponsespontaneous painsugartooltransmission processvoltage
项目摘要
DESCRIPTION (provided by applicant): Pain-sensing sensory neurons of the dorsal root ganglion (DRG) can become sensitized (hyperexcitable) in response to pathological conditions such as diabetes. Due to insufficient knowledge concerning the mechanisms underlying this sensitization, current treatments for painful diabetic neuropathy are limited to somewhat non-specific systemic drugs, such as opioids or gabapentin, which can cause significant side effects and have high potential for abuse. Recent studies have established that T-channels make a previously unrecognized contribution to sensitization of pain responses by enhancing excitability of nociceptors. We recently showed that DRG T-currents are up-regulated in streptozotocin (STZ)-induced and ob/ob mouse models of diabetic neuropathy and contribute to enhanced pain transmission. In preliminary data, we show that the glycosylation inhibitor neuraminidase inhibits T-currents and reverses thermal and mechanical hyperalgesia in these animal models. This finding has led us to hypothesize that post-translational glycosylation of the CaV3.2 channel increases activity, enhances excitability of nociceptive DRG neurons, and consequently contributes to the symptoms of painful diabetic neuropathy. Our specific aims are to: Aim 1: To use patch-clamp recordings and biophysical methods to study glycosylation-induced alterations of CaV3.2 T-channel activity in acutely dissociated DRG neurons in vitro. We propose that alterations in T-current kinetics and density can directly influence excitability of nociceptive DR cells. Aim 2: To investigate sites at which glycosylation of CaV3.2 T-channels occur in recombinant cells, native, and cultured DRG neurons. We propose that glycosylation of specific extracellular asparagine residues of CaV3.2 channels increases current density and membrane expression of the channel. Aim 3: To test the hypothesis that glycosylation of CaV3.2 T-channels in the peripheral axons of sensory neurons participates in painful PDN. We postulate that reversing glycosylation of CaV3.2 channels in diabetic animals will reverse abnormal membrane expression of these channels in somas and peripheral axons of nociceptive DRG cells, diminish cellular hyper-excitability, and reverse neuropathic pain progression in vivo. The proposed work is innovative in that a new mechanism for channel regulation will be characterized. It is medically significant because understanding the details of this regulatory pathway will facilitate development of novel drugs targeting steps in this pathway for treatment of painful neuropathies. We expect that this approach may decrease side effects from medication and reduce the potential for drug abuse in patients with painful diabetic neuropathy.
描述(由申请人提供):背根神经节(DRG)的痛觉感觉神经元可以响应糖尿病等病理状况而变得敏感(过度兴奋)。由于对这种致敏机制的了解不足,目前对疼痛性糖尿病神经病变的治疗仅限于一些非特异性全身药物,例如阿片类药物或加巴喷丁,这些药物可能会导致显着的副作用,并且很可能被滥用。最近的研究表明,T 通道通过增强伤害感受器的兴奋性,对疼痛反应的敏化做出了以前未被认识到的贡献。我们最近表明,在链脲佐菌素 (STZ) 诱导的糖尿病神经病变小鼠模型和 ob/ob 小鼠模型中,DRG T 电流上调,并有助于增强疼痛传递。在初步数据中,我们表明糖基化抑制剂神经氨酸酶可抑制 T 电流并逆转这些动物模型中的热和机械痛觉过敏。这一发现使我们推测 CaV3.2 通道的翻译后糖基化会增加活性,增强伤害性 DRG 神经元的兴奋性,从而导致疼痛性糖尿病神经病变的症状。我们的具体目标是: 目标 1:使用膜片钳记录和生物物理方法来研究糖基化诱导的体外急性分离 DRG 神经元中 CaV3.2 T 通道活性的改变。我们认为 T 电流动力学和密度的改变可以直接影响伤害性 DR 细胞的兴奋性。目标 2:研究重组细胞、天然和培养的 DRG 神经元中 CaV3.2 T 通道糖基化发生的位点。我们认为 CaV3.2 通道的特定细胞外天冬酰胺残基的糖基化会增加通道的电流密度和膜表达。目标 3:检验感觉神经元外周轴突中 CaV3.2 T 通道的糖基化参与疼痛 PDN 的假设。我们假设逆转糖尿病动物中 CaV3.2 通道的糖基化将逆转这些通道在伤害性 DRG 细胞的体细胞和外周轴突中的异常膜表达,减少细胞过度兴奋性,并逆转体内神经病理性疼痛的进展。拟议工作的创新之处在于将建立一种新的渠道监管机制。这具有医学意义,因为了解该调节途径的细节将有助于开发针对该途径中的步骤的新药物,用于治疗疼痛性神经病。我们预计这种方法可以减少药物的副作用,并减少患有疼痛性糖尿病神经病变的患者滥用药物的可能性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vesna Jevtovic-Todorovic其他文献
Vesna Jevtovic-Todorovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vesna Jevtovic-Todorovic', 18)}}的其他基金
Novel neurosteroid anesthetics and developmental synaptogenesis
新型神经类固醇麻醉剂和发育突触发生
- 批准号:
10201697 - 财政年份:2019
- 资助金额:
$ 36.97万 - 项目类别:
Novel neurosteroid anesthetics and developmental synaptogenesis
新型神经类固醇麻醉剂和发育突触发生
- 批准号:
10673850 - 财政年份:2019
- 资助金额:
$ 36.97万 - 项目类别:
Novel neurosteroid anesthetics and developmental synaptogenesis
新型神经类固醇麻醉剂和发育突触发生
- 批准号:
10456624 - 财政年份:2019
- 资助金额:
$ 36.97万 - 项目类别:
Novel neurosteroid anesthetics and developmental synaptogenesis
新型神经类固醇麻醉剂和发育突触发生
- 批准号:
10017289 - 财政年份:2019
- 资助金额:
$ 36.97万 - 项目类别:
Novel neurosteroid anesthetics and perioperative analgesia
新型神经类固醇麻醉剂和围手术期镇痛
- 批准号:
9333664 - 财政年份:2017
- 资助金额:
$ 36.97万 - 项目类别:
Novel neurosteroid anesthetics and perioperative analgesia
新型神经类固醇麻醉剂和围手术期镇痛
- 批准号:
9926278 - 财政年份:2017
- 资助金额:
$ 36.97万 - 项目类别:
Molecular mechanisms of glycosylation of Cav3.2 channels in pain pathway
疼痛通路中Cav3.2通道糖基化的分子机制
- 批准号:
9127411 - 财政年份:2016
- 资助金额:
$ 36.97万 - 项目类别:
相似国自然基金
儿童药品不良反应主动监测中时序处理策略的方法学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于真实世界医疗大数据的中西药联用严重不良反应监测与评价关键方法研究
- 批准号:82274368
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于隐狄利克雷分配模型的心血管系统药物不良反应主动监测研究
- 批准号:82273739
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于真实世界数据的创新药品上市后严重罕见不良反应评价关键方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
OR10G7错义突变激活NLRP3炎症小体致伊马替尼严重皮肤不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
- 批准号:
10603436 - 财政年份:2023
- 资助金额:
$ 36.97万 - 项目类别:
Advancing Development of Novel Immunotherapy for Chemotherapy-induced Peripheral Neuropathy (CIPN)
推进化疗引起的周围神经病变 (CIPN) 的新型免疫疗法的发展
- 批准号:
10588384 - 财政年份:2023
- 资助金额:
$ 36.97万 - 项目类别:
DISCOVERY OF NOVEL TARGETS FOR POST-TRAUMATIC HEADACHE
发现创伤后头痛的新靶标
- 批准号:
10685784 - 财政年份:2023
- 资助金额:
$ 36.97万 - 项目类别:
Glial metabolic status regulates axon regeneration in the central nervous system
神经胶质代谢状态调节中枢神经系统轴突再生
- 批准号:
10656678 - 财政年份:2023
- 资助金额:
$ 36.97万 - 项目类别: