Repairing the Kidney Endothelium via Targeted Extracellular Matrix Modifiers
通过靶向细胞外基质修饰剂修复肾内皮
基本信息
- 批准号:9449094
- 负责人:
- 金额:$ 31.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:ANGPT1 geneAddressAnimal ModelAnimalsBasement membraneBindingBiocompatible MaterialsBiologyBiomedical EngineeringBloodBlood CirculationBlood VesselsBlood capillariesBlood flowCarrying CapacitiesCell physiologyChemistryChronic DiseaseChronic Kidney FailureCollagen Type IVComplexCongestive Heart FailureCoronary heart diseaseDataDeteriorationDiagnosisDialysis procedureDiffuseDiseaseDisease ProgressionDisease modelEnd stage renal failureEndothelial CellsEndotheliumEnvironmentExtracellular MatrixFailureFoundationsFunctional disorderGoalsGrowth FactorHeparinHeparin Binding Growth FactorHomeostasisHumanHypoxiaInflammatoryInheritedInjuryInvestigationK-Series Research Career ProgramsKidneyKidney DiseasesKidney FailureKidney TransplantationKnowledgeLeadLegal patentLengthLiquid substanceMaintenanceMechanicsMediator of activation proteinMedicineMethodsModelingMolecularNanotechnologyNatureNephrologyOrganPathway interactionsPeptidesPericytesPermeabilityPhysiologyPopulationProcessProtein EngineeringProteinsProteomicsPublicationsPublishingResearchResearch PersonnelRoleScienceSpecificityStandardizationStrokeSupporting CellSystemTechnologyTestingTherapeuticTherapeutic AgentsTight JunctionsTissuesTransgenic ModelTranslatingTranslationsTransplantationUnited StatesUnited States National Institutes of HealthUniversitiesUrineVascular DiseasesVascular Endothelial Growth FactorsVascular EndotheliumVenousanimal model developmentbasebiomacromoleculecell typehuman diseaseimprovedimproved functioningin vivoinnovationkidney repairkidney vascular structuremesangial cellmigrationmodel designmortalitymultidisciplinarynanomaterialsnew technologypersonalized approachpodocytepreventrecruitrepairedrestorationscaffoldsolutetargeted deliverytoolwasting
项目摘要
PROJECT SUMMARY
The renal microvasculature is the convergence point for inflammatory disorders and hypoxic injury that cause
endothelial dysregulation and deterioration of the underlying extracellular matrix (ECM). Together, these
changes lead to progressive kidney dysfunction and ultimately failure. The regulatory role of the microvasculature
in general—and in particular the microvasculature of the kidney—extends beyond its blood carrying capacity,
with global implications to total-body homeostasis. Despite development of animal models of renal vascular
dysfunction, which are important components of scientific research, translation of therapeutic tools and
knowledge from animals to humans is limited by inconsistent linkages between transgenic models of disease
and human vascular physiology. New scientific understanding of the renal vasculature microenvironment, its
ECM composition, and the interdependency of endothelial cells within it provide information to develop ex vivo
models of renal microvasculature. However, bioengineered systems oftentimes oversimplify the complex,
interdependent nature of renal endothelial biology and the necessary cross-talk with pericytes and stroma within
the microenvironment. Despite new advances in photolithography and additive manufacturing, the tiny length
scales typically found within the in vivo microvasculature cannot be replicated and thus fail to adequately
recapitulate the renal microenvironment ex vivo. To address this deficiency, our multidisciplinary team developed
a bio-replicative renal microvasculature that mimics the scale, ECM make-up and fluid mechanics of the normal
kidney. The foundation for the scientific investigation is this vascularized scaffolding system that is supported by
our published data demonstrating patent and perfusable arterial and venous circulation (Caralt et al., Am J
Transplant, 2015) with strict control of hydrodynamics (Uzarski, et al., Tissue Eng Part C Methods, 2015) that
together result in a bio-replicative ‘test rig’. This platform provides unique opportunities to manipulate the ECM
microenvironment with new technologies that unlock cellular function. To enable such an investigation, we
developed Targetable ECM Modifiers (TEMs), a new biomaterial delivery system based upon our preliminary
and published data (Jiang, et al. Biomacromolecules, 2016) demonstrating ability to discriminately target and
shuttle bioactive agents to specific ECM sub-components. Our hypothesis is that endothelial repair leading to
vascular restoration can be controlled by delivering bioactive materials to the matrix with specificity to influence
endothelial cells at ECM interfaces. Our investigation is supported by data showing a 7-fold enrichment of growth
factors within ECM scaffolds accessed by TEMs, compared to soluble factors delivered free in solution, leading
to maintenance of an ex vivo vascular endothelium for 28 days where none developed in its absence. This
investigation is further enabled by a multidisciplinary team of collaborators in bioengineering, nanotechnology,
peptide chemistry and nephrology to tailor the ex vivo renal vasculature with a panel of TEMs to develop testing
platforms to study disease and therapies to repair renal vascular injury and reverse kidney disease.
项目摘要
肾脏微脉管系统是导致炎症性疾病和低氧损伤的收敛点
内皮失调和基础细胞外基质(ECM)的确定。在一起,这些
变化导致肾脏功能障碍,最终导致失败。微脉管系统的调节作用
通常,尤其是肾脏的微脉管系统,超出了其血液承载能力,
对全体体内稳态产生了全球影响。尽管发展了肾血管的动物模型
功能障碍是科学研究的重要组成部分,治疗工具的翻译和
从动物到人类的知识受疾病转基因模型之间不一致的联系的限制
和人类血管生理学。对肾脏脉管系统微环境的新科学理解,其
ECM组成,其中内皮细胞的相互依赖性提供了开发离体的信息
肾小管模型。但是,生物工程系统通常过度简化复合物,
肾脏内皮生物学的相互依赖性质以及与周内和基质的必要串扰
微环境。尽管摄影和成瘾性制造业有了新的进步,但长度很小
通常在体内微脉管系统中发现的量表无法复制,因此无法充分地
概括了肾脏微环境。为了解决这一缺陷,我们的多学科团队开发了
一种模仿正常的量表,ECM化妆和流体力学的生物复制性肾脏微举行
肾。科学研究的基础是这种血管化的脚手架系统
我们发布的数据证明了专利和灌注动脉和静脉循环(Caralt等,AM J
移植,2015年),严格控制流体动力学(Uzarski等人,Tissue Eng Part C方法,2015年)
共同导致生物复制的“测试钻机”。该平台提供了操纵ECM的独特机会
微环境具有解锁细胞功能的新技术。为了进行这样的调查,我们
开发了目标ECM修饰符(TEMS),这是一种基于我们的初步的新生物材料输送系统
并发布了数据(Jiang等人,生物大分子,2016年),表明了鉴别靶向和靶向的能力
穿梭生物活性剂到特定的ECM子组件。我们的假设是导致的内皮修复
血管恢复可以通过将生物活性材料传递给基质具有特异性来控制
ECM界面的内皮细胞。我们的投资得到了显示7倍增长的数据的支持
与溶液中免费提供的实体因素相比,TEM访问的ECM支架内的因素
维持离体血管内皮的28天,在不存在的情况下没有发展。这
纳米技术生物工程合作者的跨学科团队进一步启动了调查,纳米技术,
肽化学和肾脏科,可通过一组TEMS来量身定制离体肾脏脉管系统以开发测试
研究疾病和修复肾血管损伤和反向肾脏疾病的疗法的平台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JASON A WERTHEIM其他文献
JASON A WERTHEIM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JASON A WERTHEIM', 18)}}的其他基金
Repairing the Kidney Endothelium via Targeted Extracellular Matrix Modifiers
通过靶向细胞外基质修饰剂修复肾内皮
- 批准号:
10213014 - 财政年份:2020
- 资助金额:
$ 31.6万 - 项目类别:
Repairing the Kidney Endothelium via Targeted Extracellular Matrix Modifiers
通过靶向细胞外基质修饰剂修复肾内皮
- 批准号:
10454117 - 财政年份:2020
- 资助金额:
$ 31.6万 - 项目类别:
Repairing the Kidney Endothelium via Targeted Extracellular Matrix Modifiers
通过靶向细胞外基质修饰剂修复肾内皮
- 批准号:
10205482 - 财政年份:2020
- 资助金额:
$ 31.6万 - 项目类别:
ShEEP Request for Enabling 3D Nano-Printer Technology
ShEEP 请求启用 3D 纳米打印机技术
- 批准号:
10179144 - 财政年份:2020
- 资助金额:
$ 31.6万 - 项目类别:
Extracellular Matrix Induction of Renal Stem and Progenitor Cell Development
肾干细胞和祖细胞发育的细胞外基质诱导
- 批准号:
10200365 - 财政年份:2016
- 资助金额:
$ 31.6万 - 项目类别:
Optimization and control of hepatocyte activity via biofunctional modification
通过生物功能修饰优化和控制肝细胞活性
- 批准号:
9246530 - 财政年份:2014
- 资助金额:
$ 31.6万 - 项目类别:
Optimization and control of hepatocyte activity via biofunctional modification
通过生物功能修饰优化和控制肝细胞活性
- 批准号:
8679763 - 财政年份:2014
- 资助金额:
$ 31.6万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The role of Angiopoietin-TEK signaling in polypoidal choroidal vasculopathy
血管生成素-TEK 信号在息肉状脉络膜血管病变中的作用
- 批准号:
10183715 - 财政年份:2021
- 资助金额:
$ 31.6万 - 项目类别:
HEALS™: An Active Hydrogen Sulfide Delivery Technique for Accelerated, Effective Wound Healing
HEALS™:一种活性硫化氢输送技术,可加速、有效伤口愈合
- 批准号:
10323467 - 财政年份:2021
- 资助金额:
$ 31.6万 - 项目类别:
The role of Angiopoietin-TEK signaling in polypoidal choroidal vasculopathy
血管生成素-TEK 信号在息肉状脉络膜血管病变中的作用
- 批准号:
10412011 - 财政年份:2021
- 资助金额:
$ 31.6万 - 项目类别:
The role of Angiopoietin-TEK signaling in polypoidal choroidal vasculopathy
血管生成素-TEK 信号在息肉状脉络膜血管病变中的作用
- 批准号:
10630099 - 财政年份:2021
- 资助金额:
$ 31.6万 - 项目类别:
Nanoscale drug carriers for the treatment of Acute Respiratory Distress Syndrome (ARDS).
用于治疗急性呼吸窘迫综合征(ARDS)的纳米药物载体。
- 批准号:
10461706 - 财政年份:2020
- 资助金额:
$ 31.6万 - 项目类别: