Repairing the Kidney Endothelium via Targeted Extracellular Matrix Modifiers
通过靶向细胞外基质修饰剂修复肾内皮
基本信息
- 批准号:10205482
- 负责人:
- 金额:$ 30.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:ANGPT1 geneAddressAnimal ModelAnimalsBasement membraneBindingBiocompatible MaterialsBiologyBiomedical EngineeringBloodBlood CirculationBlood VesselsBlood capillariesBlood flowCarrying CapacitiesCell physiologyChemistryChronic DiseaseChronic Kidney FailureCollagen Type IVComplexCongestive Heart FailureCoronary heart diseaseDataDeteriorationDiagnosisDialysis procedureDiffuseDiseaseDisease ProgressionDisease modelEnd stage renal failureEndothelial CellsEndotheliumEnvironmentExtracellular MatrixFailureFoundationsGoalsGrowth FactorHeparinHeparin Binding Growth FactorHomeostasisHumanHypoxiaInflammatoryInheritedInjuryInvestigationK-Series Research Career ProgramsKidneyKidney DiseasesKidney FailureKidney TransplantationKnowledgeLeadLegal patentLengthLiquid substanceMaintenanceMechanicsMediator of activation proteinMedicineMethodsModelingMolecularNanotechnologyNatureNephrologyOrganPathway interactionsPeptidesPericytesPermeabilityPhysiologyPopulationProcessProtein EngineeringProteinsProteomicsPublicationsPublishingResearchResearch PersonnelRoleScienceSpecificityStandardizationStrokeSupporting CellSystemTechnologyTestingTherapeuticTherapeutic AgentsTight JunctionsTissuesTransgenic ModelTranslatingTranslationsTransplantationUnited StatesUnited States National Institutes of HealthUniversitiesUrineVascular DiseasesVascular Endothelial Growth FactorsVascular EndotheliumVenousanimal model developmentbasebiomacromoleculecell typeglomerular endotheliumhuman diseaseimprovedimproved functioningin vivoinnovationkidney dysfunctionkidney repairkidney vascular structuremesangial cellmigrationmodel designmortalitymultidisciplinarynanomaterialsnew technologypersonalized approachpodocytepreventrecruitrepairedrestorationscaffoldsolutetargeted deliverytoolvascular injurywasting
项目摘要
PROJECT SUMMARY
The renal microvasculature is the convergence point for inflammatory disorders and hypoxic injury that cause
endothelial dysregulation and deterioration of the underlying extracellular matrix (ECM). Together, these
changes lead to progressive kidney dysfunction and ultimately failure. The regulatory role of the microvasculature
in general—and in particular the microvasculature of the kidney—extends beyond its blood carrying capacity,
with global implications to total-body homeostasis. Despite development of animal models of renal vascular
dysfunction, which are important components of scientific research, translation of therapeutic tools and
knowledge from animals to humans is limited by inconsistent linkages between transgenic models of disease
and human vascular physiology. New scientific understanding of the renal vasculature microenvironment, its
ECM composition, and the interdependency of endothelial cells within it provide information to develop ex vivo
models of renal microvasculature. However, bioengineered systems oftentimes oversimplify the complex,
interdependent nature of renal endothelial biology and the necessary cross-talk with pericytes and stroma within
the microenvironment. Despite new advances in photolithography and additive manufacturing, the tiny length
scales typically found within the in vivo microvasculature cannot be replicated and thus fail to adequately
recapitulate the renal microenvironment ex vivo. To address this deficiency, our multidisciplinary team developed
a bio-replicative renal microvasculature that mimics the scale, ECM make-up and fluid mechanics of the normal
kidney. The foundation for the scientific investigation is this vascularized scaffolding system that is supported by
our published data demonstrating patent and perfusable arterial and venous circulation (Caralt et al., Am J
Transplant, 2015) with strict control of hydrodynamics (Uzarski, et al., Tissue Eng Part C Methods, 2015) that
together result in a bio-replicative ‘test rig’. This platform provides unique opportunities to manipulate the ECM
microenvironment with new technologies that unlock cellular function. To enable such an investigation, we
developed Targetable ECM Modifiers (TEMs), a new biomaterial delivery system based upon our preliminary
and published data (Jiang, et al. Biomacromolecules, 2016) demonstrating ability to discriminately target and
shuttle bioactive agents to specific ECM sub-components. Our hypothesis is that endothelial repair leading to
vascular restoration can be controlled by delivering bioactive materials to the matrix with specificity to influence
endothelial cells at ECM interfaces. Our investigation is supported by data showing a 7-fold enrichment of growth
factors within ECM scaffolds accessed by TEMs, compared to soluble factors delivered free in solution, leading
to maintenance of an ex vivo vascular endothelium for 28 days where none developed in its absence. This
investigation is further enabled by a multidisciplinary team of collaborators in bioengineering, nanotechnology,
peptide chemistry and nephrology to tailor the ex vivo renal vasculature with a panel of TEMs to develop testing
platforms to study disease and therapies to repair renal vascular injury and reverse kidney disease.
项目概要
肾脏微血管系统是导致炎症性疾病和缺氧损伤的汇聚点
内皮失调和潜在的细胞外基质(ECM)恶化。
变化导致进行性肾功能障碍并最终衰竭。微血管的调节作用。
一般来说,特别是肾脏的微血管系统,超出了其血液承载能力,
尽管肾血管动物模型的发展对全身稳态具有全球影响。
功能障碍,这是科学研究、治疗工具转化和
从动物到人类的知识因疾病转基因模型之间不一致的联系而受到限制
和人体血管生理学对肾血管微环境及其的新的科学认识。
ECM 组成及其内皮细胞的相互依赖性为离体开发提供信息
然而,生物工程系统常常过于简单化复杂的、
肾内皮生物学的相互依存性质以及与肾内周细胞和基质的必要相互作用
尽管光刻和增材制造取得了新的进展,但微小的长度。
通常在体内微脉管系统中发现的鳞片无法复制,因此无法充分
为了解决这一缺陷,我们的多学科团队开发了离体肾脏微环境。
模仿正常肾微脉管系统的规模、ECM 组成和流体力学的生物复制肾微脉管系统
科学研究的基础是这种由血管支撑的支架系统。
我们发表的数据证明了专利和可灌注的动脉和静脉循环(Caralt 等人,Am J
Transplant,2015)并严格控制流体动力学(Uzarski 等人,Tissue Eng Part C 方法,2015)
共同形成了一个生物复制“测试装置”,该平台提供了操纵 ECM 的独特机会。
具有解锁细胞功能的新技术的微环境为了实现这样的研究,我们
开发了靶向 ECM 改性剂 (TEM),这是一种基于我们初步研究的新型生物材料输送系统
并发表的数据(Jiang 等人,Biomacromolecules,2016)证明了区分目标和
我们的假设是内皮修复导致了特定的 ECM 子成分。
可以通过将生物活性材料输送到基质来控制血管修复,并特异性地影响
我们的研究得到了显示生长富集 7 倍的数据的支持。
与溶液中免费提供的可溶性因子相比,TEM 访问 ECM 支架内的因子,领先
维持离体血管内皮28天,在没有它的情况下,血管内皮不会发育。
由生物工程、纳米技术、
肽化学和肾病学通过一组 TEM 定制离体肾脉管系统来开发测试
研究修复肾血管损伤和逆转肾脏疾病的疾病和疗法的平台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JASON A WERTHEIM其他文献
JASON A WERTHEIM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JASON A WERTHEIM', 18)}}的其他基金
Repairing the Kidney Endothelium via Targeted Extracellular Matrix Modifiers
通过靶向细胞外基质修饰剂修复肾内皮
- 批准号:
10213014 - 财政年份:2020
- 资助金额:
$ 30.7万 - 项目类别:
Repairing the Kidney Endothelium via Targeted Extracellular Matrix Modifiers
通过靶向细胞外基质修饰剂修复肾内皮
- 批准号:
10454117 - 财政年份:2020
- 资助金额:
$ 30.7万 - 项目类别:
ShEEP Request for Enabling 3D Nano-Printer Technology
ShEEP 请求启用 3D 纳米打印机技术
- 批准号:
10179144 - 财政年份:2020
- 资助金额:
$ 30.7万 - 项目类别:
Repairing the Kidney Endothelium via Targeted Extracellular Matrix Modifiers
通过靶向细胞外基质修饰剂修复肾内皮
- 批准号:
9449094 - 财政年份:2018
- 资助金额:
$ 30.7万 - 项目类别:
Extracellular Matrix Induction of Renal Stem and Progenitor Cell Development
肾干细胞和祖细胞发育的细胞外基质诱导
- 批准号:
10200365 - 财政年份:2016
- 资助金额:
$ 30.7万 - 项目类别:
Optimization and control of hepatocyte activity via biofunctional modification
通过生物功能修饰优化和控制肝细胞活性
- 批准号:
9246530 - 财政年份:2014
- 资助金额:
$ 30.7万 - 项目类别:
Optimization and control of hepatocyte activity via biofunctional modification
通过生物功能修饰优化和控制肝细胞活性
- 批准号:
8679763 - 财政年份:2014
- 资助金额:
$ 30.7万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The role of Angiopoietin-TEK signaling in polypoidal choroidal vasculopathy
血管生成素-TEK 信号在息肉状脉络膜血管病变中的作用
- 批准号:
10183715 - 财政年份:2021
- 资助金额:
$ 30.7万 - 项目类别:
HEALS™: An Active Hydrogen Sulfide Delivery Technique for Accelerated, Effective Wound Healing
HEALS™:一种活性硫化氢输送技术,可加速、有效伤口愈合
- 批准号:
10323467 - 财政年份:2021
- 资助金额:
$ 30.7万 - 项目类别:
The role of Angiopoietin-TEK signaling in polypoidal choroidal vasculopathy
血管生成素-TEK 信号在息肉状脉络膜血管病变中的作用
- 批准号:
10412011 - 财政年份:2021
- 资助金额:
$ 30.7万 - 项目类别:
The role of Angiopoietin-TEK signaling in polypoidal choroidal vasculopathy
血管生成素-TEK 信号在息肉状脉络膜血管病变中的作用
- 批准号:
10630099 - 财政年份:2021
- 资助金额:
$ 30.7万 - 项目类别:
Nanoscale drug carriers for the treatment of Acute Respiratory Distress Syndrome (ARDS).
用于治疗急性呼吸窘迫综合征(ARDS)的纳米药物载体。
- 批准号:
10461706 - 财政年份:2020
- 资助金额:
$ 30.7万 - 项目类别: