Measurement of Mechanical Tension Across Desmosomes
桥粒机械张力的测量
基本信息
- 批准号:9038542
- 负责人:
- 金额:$ 7.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-10 至 2018-11-30
- 项目状态:已结题
- 来源:
- 关键词:ActomyosinAddressAdherens JunctionAnimal Disease ModelsAntibodiesAutoimmune DiseasesAutoimmunityBacterial ToxinsBindingBiologyBiomechanicsBullaCadherinsCardiomyopathiesCell Culture TechniquesCellsCellular MechanotransductionCellular StructuresCommunicable DiseasesComplementCytoskeletonDNA Sequence AlterationDataDesmosomesDiseaseDisease modelE-CadherinEnergy TransferEngineeringEnvironmentEpidermisEpidermolysis Bullosa SimplexEpithelial CellsGoalsHeartHereditary DiseaseHomeostasisIntercellular JunctionsIntermediate Filament ProteinsIntermediate FilamentsKeratinLinkMeasurementMeasuresMechanical StressMechanicsMediatingMediator of activation proteinMembraneMentorshipModelingMutationOrganOrganismPathologic ProcessesPathologyPemphigus VulgarisPhysiological ProcessesPlayProcessProteinsRegulationRestRoleSignal PathwaySignal TransductionSignaling MoleculeSignaling ProteinSkinSkin PhysiologyStretchingStructureTechniquesTight JunctionsTissuesTranslatingUnited States National Institutes of HealthWeight-Bearing stateWorkWound Healingbasecell motilitycytokinedesmoglein 2desmoglein IIIdisease-causing mutationepithelial to mesenchymal transitionexperiencehuman diseasein vitro Modelinnovationinsightkeratin 5keratinocytemonolayernew therapeutic targetnovel strategiesnovel therapeuticspublic health relevancesensorskin disordertransmission processtreatment strategywound
项目摘要
DESCRIPTION (provided by applicant): Considered to be the largest organ of the body, the primary function of skin is to act as a barrier between the organism and the environment. Strong cell-cell junctions, formed by adherens junctions, tight junctions, and desmosomes, are critical to the integrity of the epidermis and its ability to resist mechanical stress. Desmosome-targeting genetic, autoimmune, and infectious diseases present clinically in both the skin and heart, two organs with tissues subjected to significant mechanical forces, which suggest that a major function of desmosomes is to resist mechanical stress. While it has been shown that expression of desmosomal and keratin proteins are critical to the mechanical integrity of skin, it is not known if desmosomes act primarily as mechanical or signaling molecules. Because the mechanical force applied to desmosomes has never been directly measured it is also not known if therapies that strengthen desmosomes would be a successful strategy for treatment of skin-blistering and wound healing. The central hypotheses of this proposal is that desmosomes are subject to tensile forces applied by the keratin cytoskeleton, and that the level of tension is altered in wound healing and skin diseases. The major innovation in this project is the use of a new technique developed by my lab to directly measure desmosome tension through the use of desmoglein-2 and -3 FRET- based tension sensors. This novel approach will provide significant insight into the magnitude and regulation of desmosome forces, the ability of the IF cytoskeleton to transmit and apply mechanical force, and the role of desmosome forces in skin physiology and pathology. In Aim 1, the dynamics of desmosome tension will be examined during the process of desmosome formation, and regulators of desmosome tension will be identified. Additionally, changes in desmosome tension will be measured in cells subjected to cyclic stretch. In Aim 2, desmosome tension will be measured during the process of wound healing and also in epithelial to mesenchymal transition. In Aim 3, in vitro models of pemphigus vulgaris and epidermolysis bullosa simplex will be used to determine if desmosome tension is altered in skin blistering diseases. We will address a significant gap in the understanding the role of tissue
strength in diseases with skin blistering and wounding diseases caused by mutations in or autoimmunity to desmosomes or keratin IFs. Namely, we will address if the principal role of desmosomes is mechanical or signaling. These basic mechanobiology studies will provide significant insight into the dynamics of mechanical forces across desmosomes under conditions of normal homeostasis and disease, and are essential to the identification of new therapeutic targets for wound healing and desmosome-related skin pathologies. Additionally, the role of desmosomes in force transmission may also provide mechanistic insight into why desmosome-associated diseases also frequently present as cardiomyopathies. Lastly, our understanding of the ability of IF to transmit mechanical forces is lacking. As a result, these studies will fundamentally impact the understanding of cellular biomechanics.
描述(由申请人提供):皮肤被认为是身体最大的器官,其主要功能是充当生物体与环境之间的屏障,由粘附连接、紧密连接和细胞间连接形成。桥粒对于表皮的完整性及其抵抗临床上存在于皮肤和心脏中的机械应力的桥粒靶向遗传、自身免疫和感染性疾病至关重要,这两个器官的组织受到显着的机械作用。虽然桥粒和角蛋白的表达对于皮肤的机械完整性至关重要,但这表明桥粒的主要功能是抵抗机械应力,但尚不清楚桥粒是否主要充当机械分子或信号分子。由于从未直接测量过施加于桥粒的机械力,因此也不知道强化桥粒的疗法是否是治疗皮肤起泡和伤口愈合的成功策略。桥粒受到角蛋白细胞骨架施加的张力,并且张力水平在伤口愈合和皮肤疾病中发生改变,该项目的主要创新是使用我的实验室开发的新技术来直接测量桥粒张力。使用基于桥粒糖蛋白-2和-3 FRET的张力传感器,这种新颖的方法将提供对桥粒力的大小和调节、IF细胞骨架传递和施加机械力的能力的重要见解。桥粒力在皮肤生理学和病理学中的作用在目标1中,将检查桥粒形成过程中桥粒张力的动态,并另外鉴定桥粒张力的调节因子。测量细胞中桥粒张力的变化。在目标 2 中,将在伤口愈合过程中以及在上皮到间质转化过程中测量桥粒张力。在目标 3 中,天疱疮的体外模型。寻常型和单纯性大疱性表皮松解症将用于确定桥粒张力是否在皮肤起泡疾病中发生改变,我们将解决在理解组织作用方面的重大差距。
桥粒或角蛋白 IF 的突变或自身免疫引起的皮肤起泡和创伤疾病的强度也就是说,我们将解决桥粒的主要作用是机械作用还是信号传导作用。在正常稳态和疾病条件下跨桥粒的力,对于确定伤口愈合和桥粒相关皮肤病理的新治疗靶点至关重要。最后,我们对 IF 传递机械力的能力缺乏了解,这些研究将从根本上影响对细胞的理解。生物力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel E Conway其他文献
Daniel E Conway的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel E Conway', 18)}}的其他基金
Cell junction and nuclear forces as mediators of epithelial cell homeostasis
细胞连接和核力作为上皮细胞稳态的介质
- 批准号:
10206611 - 财政年份:2016
- 资助金额:
$ 7.09万 - 项目类别:
Cell junction and nuclear forces as mediators of epithelial cell homeostasis
细胞连接和核力作为上皮细胞稳态的介质
- 批准号:
10628377 - 财政年份:2016
- 资助金额:
$ 7.09万 - 项目类别:
Cell junction and nuclear forces as mediators of epithelial cell homeostasis
细胞连接和核力作为上皮细胞稳态的介质
- 批准号:
9142466 - 财政年份:2016
- 资助金额:
$ 7.09万 - 项目类别:
Cell junction and nuclear forces as mediators of epithelial cell homeostasis
细胞连接和核力作为上皮细胞稳态的介质
- 批准号:
10709901 - 财政年份:2016
- 资助金额:
$ 7.09万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Physical, cellular, and molecular control of tissue fission and fusion
组织裂变和融合的物理、细胞和分子控制
- 批准号:
10724005 - 财政年份:2023
- 资助金额:
$ 7.09万 - 项目类别:
Elucidating the cytoskeletal mechanics in stem cell niche morphogenesis
阐明干细胞生态位形态发生中的细胞骨架力学
- 批准号:
10729503 - 财政年份:2022
- 资助金额:
$ 7.09万 - 项目类别:
Elucidating the cytoskeletal mechanics in stem cell niche morphogenesis
阐明干细胞生态位形态发生中的细胞骨架力学
- 批准号:
10386101 - 财政年份:2022
- 资助金额:
$ 7.09万 - 项目类别:
Project 2: Mechanochemical Mechanisms and Vulnerabilities of Individual and Collective Organ-Preferential Metastasis In Vivo
项目2:体内个体和集体器官优先转移的机械化学机制和脆弱性
- 批准号:
10490290 - 财政年份:2021
- 资助金额:
$ 7.09万 - 项目类别:
Project 2: Mechanochemical Mechanisms and Vulnerabilities of Individual and Collective Organ-Preferential Metastasis In Vivo
项目2:体内个体和集体器官优先转移的机械化学机制和脆弱性
- 批准号:
10271568 - 财政年份:2021
- 资助金额:
$ 7.09万 - 项目类别: