Project 2: Mechanochemical Mechanisms and Vulnerabilities of Individual and Collective Organ-Preferential Metastasis In Vivo
项目2:体内个体和集体器官优先转移的机械化学机制和脆弱性
基本信息
- 批准号:10271568
- 负责人:
- 金额:$ 37.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-17 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:ActomyosinAddressAdherens JunctionAdhesionsBasement membraneBlood CirculationBlood VesselsBreast Cancer CellCD44 geneCathepsinsCell Cycle ArrestCell DeathCell NucleusCell SurvivalCell-Cell AdhesionCellsCellular StressChromatinChromatin StructureClinicalCoagulation ProcessComputer ModelsCytometryCytoplasmDataDistantDistant MetastasisDown-RegulationEndotheliumEngineeringEnvironmentExtravasationGrowthIndividualIntercellular JunctionsInterventionKineticsLamin Type ALiquid substanceLiverMatrix MetalloproteinasesMechanical StressMechanicsMediatingMelanoma CellMetastatic Neoplasm to the LiverMetastatic Skin CancerMicroanatomyModelingMolecularMolecular ConformationMolecular TargetMonitorMovementMusNeoplasm Circulating CellsNeoplasm MetastasisNuclearOrganOutcomePathway interactionsPeptide HydrolasesProbabilityProcessRegulationSchemeSecureSiteSkinSolidStressSurvival RateSystemTestingTissue imagingTissuesVariantVascular remodelingbasecancer cellcell motilitycopingearly onsetexperiencefitnessin silicoin vivoin vivo Modelintravital microscopylive cell microscopymechanical propertiesmouse modelmultiphoton microscopyneoplastic cellnovelpreventprogramsresponseshear stresssuccesstissue stresstranscriptomicstriple-negative invasive breast carcinomavascular bed
项目摘要
Project 2: SUMMARY
Organ colonization and survival of circulating tumor cells (CTCs) depends on a response program in tumor
cells (TCs), termed mechano-adaptation, to cope with mechanical and molecular stresses on the cytoplasm
and nucleus experienced during intravascular arrest and extravasation. The strength and duration of
mechanical stress differs in vascular beds among organs, such as liver and skin, and further differs between
individual-cell and collective organ colonization. Molecular systems implicated in the mechano-adaptation of
CTCs include coordinated cell-cell adhesions, cytoskeletal contractility, protease systems and deformation
or the nucleus, which cooperate to secure multistep movement into the secondary site and TC survival. We
hypothesize that successful metastasis in vivo depends on an adaptive interplay between the mechanical
and molecular intra- and perivascular stresses present at distant site and the coping ability of CTCs to
overcome these stresses. By coordinated cell-cell adhesion, cytoskeletal contractility, deformation of the
nucleus, and protease systems we predict that mechano-adaptation secures individual-cell and collective TC
survival and further mediates lasting reprogramming towards growth or dormancy. Consequently, we
anticipate that interfering with cell mechanical adaptation strategies will increase cell stress, support CTC
death and diminish metastatic organ colonization. By combining intravital microscopy in mouse models,
computational modeling (Core A) and transcriptomic and chromatin structure analyses (Core B), we will
address the rate-limiting steps of single-cell and collective organ colonization of triple-negative breast cancer
and melanoma cells to skin and liver. In Aim 1 we will examine the mechanisms of collective and single-cell
organ colonization and metastatic outcomes, by interfering with adherens junctions (p120-catenin) and
intravascular coagulation. In Aim 2, we will identify the rate-limiting steps of cytoskeletal and nuclear
mechanics and the ability to remodel the vascular wall during single-cell and collective organ colonization.
Targeted interference with CD44-mediated adhesion to perivascular substrate, actomyosin contractility,
nuclear deformability by lamin A/C expression variation and the ability to reorganize the basement membrane
will be performed. In Aim 3, we will identify the molecular responses underlying stress-induced mechano-
adaptation and associated effects on nuclear chromatin conformation, using transcriptomic and ultrastructural
analyses combined with computational modeling. Identified key pathways implicated in mediating mechano-
adaptation and TC survival, cell cycle arrest (dormancy) and outgrowth will be inhibited by combined
molecular interference to limit TC survival and both single-cell and collective metastasis. This project will
deliver an integrated view on cell migration, molecular reprogramming, fate decisions, and reveal potential
intervention points to enhance tumor cell elimination in transit.
项目 2:总结
循环肿瘤细胞 (CTC) 的器官定植和存活取决于肿瘤的反应程序
细胞(TC),称为机械适应,以应对细胞质上的机械和分子压力
以及在血管内停滞和外渗过程中经历的细胞核。强度和持续时间
不同器官(例如肝脏和皮肤)的血管床的机械应力不同,并且不同器官之间的机械应力也不同。
个体细胞和集体器官定植。分子系统涉及机械适应
CTC 包括协调的细胞间粘附、细胞骨架收缩性、蛋白酶系统和变形
或细胞核,它们合作以确保多步移动到次要位点和 TC 存活。我们
假设体内成功的转移取决于机械力之间的适应性相互作用
和远处部位存在的血管内和血管周围分子应力以及 CTC 的应对能力
克服这些压力。通过协调细胞间粘附、细胞骨架收缩性、细胞变形
细胞核和蛋白酶系统,我们预测机械适应可确保个体细胞和集体 TC
存活并进一步介导持久的重编程以实现生长或休眠。因此,我们
预计干扰细胞机械适应策略会增加细胞应激,支持 CTC
死亡并减少转移器官定植。通过在小鼠模型中结合活体显微镜检查,
计算建模(核心 A)以及转录组和染色质结构分析(核心 B),我们将
解决三阴性乳腺癌单细胞和集体器官定植的限速步骤
以及皮肤和肝脏的黑色素瘤细胞。在目标 1 中,我们将研究集体和单细胞的机制
通过干扰粘附连接(p120-连环蛋白)和
血管内凝血。在目标 2 中,我们将确定细胞骨架和核的限速步骤。
单细胞和集体器官定植期间的力学和重塑血管壁的能力。
靶向干扰 CD44 介导的血管周围基质粘附、肌动球蛋白收缩性、
由核纤层蛋白 A/C 表达变化引起的核变形性和重组基底膜的能力
将被执行。在目标 3 中,我们将确定应力诱导机械作用下的分子反应
利用转录组学和超微结构研究对核染色质构象的适应和相关影响
分析与计算建模相结合。确定了介导机械作用的关键途径
适应和 TC 存活、细胞周期停滞(休眠)和生长将受到组合的抑制
分子干扰限制 TC 存活以及单细胞和集体转移。该项目将
提供关于细胞迁移、分子重编程、命运决定的综合观点,并揭示潜力
干预点可增强转运过程中肿瘤细胞的消除。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Friedl其他文献
Peter Friedl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Friedl', 18)}}的其他基金
Project 2: Mechanochemical Mechanisms and Vulnerabilities of Individual and Collective Organ-Preferential Metastasis In Vivo
项目2:体内个体和集体器官优先转移的机械化学机制和脆弱性
- 批准号:
10688251 - 财政年份:2021
- 资助金额:
$ 37.65万 - 项目类别:
Project 2: Mechanochemical Mechanisms and Vulnerabilities of Individual and Collective Organ-Preferential Metastasis In Vivo
项目2:体内个体和集体器官优先转移的机械化学机制和脆弱性
- 批准号:
10490290 - 财政年份:2021
- 资助金额:
$ 37.65万 - 项目类别:
2013 Directed Cell Migration Gordon Research Conference & Gordon Research Seminar
2013年定向细胞迁移戈登研究会议
- 批准号:
8459154 - 财政年份:2012
- 资助金额:
$ 37.65万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Physical, cellular, and molecular control of tissue fission and fusion
组织裂变和融合的物理、细胞和分子控制
- 批准号:
10724005 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
Elucidating the cytoskeletal mechanics in stem cell niche morphogenesis
阐明干细胞生态位形态发生中的细胞骨架力学
- 批准号:
10729503 - 财政年份:2022
- 资助金额:
$ 37.65万 - 项目类别:
Elucidating the cytoskeletal mechanics in stem cell niche morphogenesis
阐明干细胞生态位形态发生中的细胞骨架力学
- 批准号:
10386101 - 财政年份:2022
- 资助金额:
$ 37.65万 - 项目类别:
Project 2: Mechanochemical Mechanisms and Vulnerabilities of Individual and Collective Organ-Preferential Metastasis In Vivo
项目2:体内个体和集体器官优先转移的机械化学机制和脆弱性
- 批准号:
10490290 - 财政年份:2021
- 资助金额:
$ 37.65万 - 项目类别:
Unconventional myosins and the regulation of gut barrier integrity and restitution during inflammation
非常规肌球蛋白以及炎症期间肠道屏障完整性和恢复的调节
- 批准号:
10443882 - 财政年份:2020
- 资助金额:
$ 37.65万 - 项目类别: