Multifunctional Intelligent Hierarchical Fibrous Biomaterials Integrated with Multimodal Biosensing and Feedback-Based Interventions for Healing Infected Chronic Wounds
多功能智能分层纤维生物材料与多模式生物传感和基于反馈的干预措施相结合,用于治愈感染的慢性伤口
基本信息
- 批准号:10861531
- 负责人:
- 金额:$ 77.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-20 至 2024-08-19
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAffectAgingAmputationAntibioticsBiocompatible MaterialsBiometryBiosensing TechniquesBiosensorBlood capillariesBone RegenerationCOVID-19Cellular PhoneClinicClinicalCollaborationsComplications of Diabetes MellitusDataDevelopmentDevicesDiabetes MellitusDiabetic Foot UlcerDiabetic mouseDiseaseDrug Delivery SystemsElectrospinningElectrostaticsEpitheliumEvaluationFailureFeedbackFiberFoot UlcerFoundationsFunctional disorderGranulation TissueGrowth FactorHealth Care CostsHealthcareHeart DiseasesHomeHospitalsHumanIn SituIndividualInfectionInflammationIntelligenceInterventionIontophoresisLeg UlcerLightLower ExtremityMeasurementMechanicsMedicalMethodsMicrobial BiofilmsModalityMonitorNerve RegenerationOperative Surgical ProceduresPatientsPharmaceutical PreparationsPorosityProceduresProcessPseudomonas aeruginosaQuality of lifeRadialReproducibilityResearchRiskSkinStaphylococcus aureusStreptococcusStructureSystemTablet ComputerTelemedicineTemperatureTestingTimeType 2 diabeticUnited StatesUric AcidVenousVisitWound InfectionWound modelsbioelectronicsbioscaffoldchronic woundcombatcombat woundcostdata acquisitiondata exchangedecubitus ulcerdesigndiabeticdiabetic patientdigitaleffective therapyefficacy evaluationexperiencefabricationflexibilityhandheld mobile devicehealinghydrophilicityimprovedin vivoinfection managementinnovationmortalitymultimodalitynanofibernovelpathogenpharmacologicportabilitypreventprinted circuit boardreal time monitoringsensorskin woundsmart bandagesuccesstissue regenerationwirelesswoundwound carewound closurewound healingwound treatment
项目摘要
Project Summary
Chronic wounds arise as a consequence of diabetes, venous dysfunction, aging, surgeries or others and pose
a major healthcare challenge in the United States. For example, 20-25% of diabetic patients develop foot ulcers
(a type of chronic wounds) and about 63.4% of them develop infections. Failure to prevent or manage infections
results in high healthcare cost, amputations, and an increased mortality. Despite recent progress in wound care,
the effective treatment of infected chronic wounds remains challenging. One problem is the lack of biomaterial
scaffolds that can simultaneously combat wound infection and promote wound tissue regeneration. The other
problem is the inability to monitor the wound in real time and offer feedback-based, pharmacological interventions.
Also, frequent hospital visits associated with existing methods increase the patient's exposure risk to contagious
diseases (e.g., COVID-19). Thus, there is an urgent need to develop new telemedicine therapies for home-based,
effective treatment of infected chronic wounds. The objective of this project is to develop intelligent hierarchical
fibrous biomaterials, consisting of vertically aligned microfibers on the bottom (promoting granulation tissue for-
mation), radially aligned nanofibers on the top (accelerating re-epithelialization), and multimodal bioelectronics
integrated on nanofibers (monitoring the wound status and providing iontophoresis-controlled multiple drug de-
livery), to treat infected chronic wounds. The central hypothesis is judiciously designed hierarchical fibrous bio-
materials, together with on-demand multistage pharmacological interventions guided by real-time wound moni-
toring, can effectively combat infections/biofilms and promote wound healing. Two specific aims include (1) fab-
ricating and characterizing intelligent biomaterials and (2) evaluating efficacy of intelligent biomaterials in moni-
toring wound status, combating infections and promoting wound healing using diabetic mice wounds and ex vivo
human skin wounds. The proposed intelligent biomaterial is innovative as compared to existing smart dressings
in light of its biodegradable hierarchical fibrous biomaterial that can promote wound tissue regeneration, its inte-
grated multimodal bioelectronics capable of providing comprehensive information of wound status and offering
feedback-based, multistage delivery of antibiotics and growth factors, and in vivo and ex vivo evaluations using
both diabetic mice wounds and human skin explants to identify existing issues and accordingly improve designs
and fabrications. Also, the correlations of the wound status/healing, sensor readouts and delivered drug amounts
will be established in this research, which are still lacking. The research team's complementary expertise, past
collaboration experiences and collaboratively generated preliminary results form the basis for the success of this
project. Results from this project will contribute to development of translational telemedicine products that can
improve the efficacy of chronic wound care, decrease healthcare costs, and most importantly reduce the rates
of amputation and modality and improve quality of life of patients, which can also lay foundations for development
of other closed-loop biomedical systems for treating heart diseases and promoting bone and neural regeneration.
项目概要
慢性伤口是由糖尿病、静脉功能障碍、衰老、手术或其他原因引起的,并构成
美国的一个重大医疗保健挑战。例如,20-25%的糖尿病患者会出现足部溃疡
(一种慢性伤口),其中约 63.4% 会出现感染。未能预防或控制感染
导致高昂的医疗费用、截肢和死亡率增加。尽管伤口护理最近取得了进展,
有效治疗感染的慢性伤口仍然具有挑战性。问题之一是缺乏生物材料
可以同时对抗伤口感染并促进伤口组织再生的支架。另一个
问题是无法实时监测伤口并提供基于反馈的药物干预措施。
此外,与现有方法相关的频繁去医院就诊增加了患者接触传染性病毒的风险
疾病(例如,COVID-19)。因此,迫切需要开发新的远程医疗疗法,用于家庭、
有效治疗感染的慢性伤口。该项目的目标是开发智能分层
纤维生物材料,由底部垂直排列的微纤维组成(促进肉芽组织-
化)、顶部径向排列的纳米纤维(加速上皮化)和多模式生物电子学
集成在纳米纤维上(监测伤口状态并提供离子电渗控制的多重药物去除
制服),治疗感染的慢性伤口。中心假设是明智设计的分层纤维生物
材料,以及实时伤口监测指导下的按需多阶段药物干预
撕裂,可以有效对抗感染/生物膜并促进伤口愈合。两个具体目标包括(1)晶圆厂
智能生物材料的表征和表征,以及(2)评估智能生物材料在监测中的功效
使用糖尿病小鼠伤口和离体来破坏伤口状态,对抗感染并促进伤口愈合
人类皮肤伤口。与现有的智能敷料相比,所提出的智能生物材料具有创新性
鉴于其可生物降解的分级纤维生物材料可以促进伤口组织再生,其集成
光栅多模态生物电子学能够提供伤口状态和治疗的全面信息
基于反馈的抗生素和生长因子的多阶段递送,以及体内和离体评估
糖尿病小鼠伤口和人类皮肤外植体,以识别现有问题并相应改进设计
和捏造。此外,伤口状态/愈合、传感器读数和输送药物量的相关性
本研究将建立这一点,目前尚缺乏。研究团队的互补专业知识,过去
合作经验和合作产生的初步成果构成了本次成功的基础
项目。该项目的结果将有助于开发可转化的远程医疗产品
提高慢性伤口护理的功效,降低医疗成本,最重要的是降低发病率
截肢和模态的改善,提高患者的生活质量,也可以为发展奠定基础
用于治疗心脏病和促进骨骼和神经再生的其他闭环生物医学系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jingwei Xie其他文献
Jingwei Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jingwei Xie', 18)}}的其他基金
Strategies to Enhance Engineered Heart Tissue Based Myocardial Repair
增强基于工程心脏组织的心肌修复的策略
- 批准号:
10581419 - 财政年份:2023
- 资助金额:
$ 77.67万 - 项目类别:
Biomimetic and Injectable Highly Porous Nanofiber Microsphere-based Platform for Alveolar Bone Regeneration
用于牙槽骨再生的仿生和可注射高孔隙纳米纤维微球平台
- 批准号:
10641000 - 财政年份:2022
- 资助金额:
$ 77.67万 - 项目类别:
A Novel High-Intensity Iontophoresis-Based Antibiotic Delivery Device for Efficacious Eradication of Chronic Wound Biofilms
一种新型高强度离子电渗疗法抗生素输送装置,可有效根除慢性伤口生物膜
- 批准号:
10634602 - 财政年份:2022
- 资助金额:
$ 77.67万 - 项目类别:
A Novel High-Intensity Iontophoresis-Based Antibiotic Delivery Device for Efficacious Eradication of Chronic Wound Biofilms
一种新型高强度离子电渗疗法抗生素输送装置,可有效根除慢性伤口生物膜
- 批准号:
10433163 - 财政年份:2022
- 资助金额:
$ 77.67万 - 项目类别:
Engineering structural bone allografts for enhanced repair and reconstruction
工程结构同种异体骨移植以增强修复和重建
- 批准号:
9978190 - 财政年份:2020
- 资助金额:
$ 77.67万 - 项目类别:
Nanofiber-based Delivery of Combined Immune-modulating Compounds to Minimize Infection and Enhance Wound Healing
基于纳米纤维的组合免疫调节化合物的递送以最大程度地减少感染并促进伤口愈合
- 批准号:
10299094 - 财政年份:2017
- 资助金额:
$ 77.67万 - 项目类别:
Nanofiber-based Delivery of Combined Immune-modulating Compounds to Minimize Infection and Enhance Wound Healing
基于纳米纤维的组合免疫调节化合物的递送以最大程度地减少感染并促进伤口愈合
- 批准号:
10796228 - 财政年份:2017
- 资助金额:
$ 77.67万 - 项目类别:
Nanofiber-based Delivery of Combined Immune-modulating Compounds to Minimize Infection and Enhance Wound Healing
基于纳米纤维的组合免疫调节化合物的递送以最大程度地减少感染并促进伤口愈合
- 批准号:
10473866 - 财政年份:2017
- 资助金额:
$ 77.67万 - 项目类别:
Nanofiber-based Delivery of Combined Immune-modulating Compounds to Minimize Infection and Enhance Wound Healing
基于纳米纤维的组合免疫调节化合物的递送以最大程度地减少感染并促进伤口愈合
- 批准号:
10653967 - 财政年份:2017
- 资助金额:
$ 77.67万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 77.67万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 77.67万 - 项目类别:
Integrative genomic and functional genomic studies to connect variant to function for CAD GWAS loci
整合基因组和功能基因组研究,将 CAD GWAS 位点的变异与功能联系起来
- 批准号:
10639274 - 财政年份:2023
- 资助金额:
$ 77.67万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 77.67万 - 项目类别:
Transfer learning leveraging large-scale transcriptomics to map disrupted gene networks in cardiovascular disease
利用大规模转录组学的转移学习来绘制心血管疾病中被破坏的基因网络
- 批准号:
10696753 - 财政年份:2023
- 资助金额:
$ 77.67万 - 项目类别: