Point-of-care prognostic modeling of PTSD risk after traumatic event exposure using digital biomarkers and clinical data from electronic health records in the emergency department setting (PREDICT)
使用数字生物标志物和急诊科电子健康记录中的临床数据对创伤事件暴露后的 PTSD 风险进行护理点预后建模 (PREDICT)
基本信息
- 批准号:10884738
- 负责人:
- 金额:$ 83.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-10 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:Accident and Emergency departmentAcuteAdmission activityBiologicalCOVID-19 pandemicCaringCellular PhoneChargeChronic Post Traumatic Stress DisorderClinicalClinical DataClinical assessmentsCognitive TherapyComputer Vision SystemsComputing MethodologiesConsumptionDataDevicesDiagnosisDiagnosticDigital biomarkerDisastersDischarge PlanningsEarly InterventionEarly treatmentEffectivenessElectronic Health RecordEmergency CareEmergency Department PhysicianEmergency Department patientEmergency SituationEmergency department visitEmergency responseEmotionsEventFaceFoundationsFutureGoalsHead MovementsHealth Care CostsHealthcare SystemsHospitalsInterventionInterviewLifeMeasuresMedicineMental DepressionMental HealthMental Health ServicesMissionModalityMorbidity - disease rateMydriasisNational Institute of Mental HealthNatural Language ProcessingNatureParticipantPatient AdmissionPatient CarePatient Self-ReportPatientsPersonal SatisfactionPhenotypePhysiologicalPost-Traumatic Stress DisordersPredictive ValuePreventionPrevention strategyPrivatizationProceduresPrognosisProxyPsyche structurePsychometricsPublishingReportingResearchResearch Project GrantsRiskSeveritiesSpeechSurvivorsSymptomsTabletsTaxesTestingTimeTrainingTraumaTriageVideo RecordingVideotapeVoiceWorkacute careacute stressbiological adaptation to stresscare systemsclinical practiceclinically significantcohortcostcost effectivedeep learningdesigndigitaldigital measuredisorder riskelectronic health dataelectronic health informationexperiencefollow-upgazehandheld mobile devicehealth applicationhigh risk populationimprovedinstrumentlongitudinal, prospective studymedical specialtiesmultimodalityneuralnovelpoint of carepost-traumatic stresspredictive markerpredictive modelingprofessional atmosphereprognosticprognostic modelprognostic performanceprognostic valueprognosticationpsychologicresponserisk stratificationroutine screeningscreeningstress symptomsupport toolstelehealthtransfer learningtrauma exposuretraumatic event
项目摘要
PROJECT SUMMARY/ ABSTRACT
Currently, no accurate prognostic model of posttraumatic stress following trauma exposure for emergency
department (ED) patients is available at the point-of-care without requiring clinical screening or diagnostic
interviews. The proposed research is based on the rationale that the 139 million annual ED visits provide a
critical window to proactively plan risk-based follow-up care at an early stage, where patients are still in contact
with the health care system. While clinical interviews are still the gold standard to screen for acute stress
symptoms following trauma exposure, their feasibility in clinical practice as routine screenings in the ED is
severely limited given the acute care priorities in the ED. The long-term goal of the proposed research is to
develop a prognostic model that is accurate, scalable, practical, and feasible with low additional burden on the
highly taxed ED procedures. The overall objective is to use advanced computational methods to extract
objective markers for posttraumatic stress from video and audio data to build a clinical readout at the point-of-
care that will enable ED clinicians to prognosticate the risk for posttraumatic stress disorder (PTSD).
Based on our preliminary data, we hypothesize that voice and speech content, head movement, pupil dilation,
gaze, and facial landmark features of emotion provide probabilistic information that will allow us to identify
digital biomarkers for PTSD. This hypothesis will be tested by pursuing two specific aims directed at analyzing
digital biomarkers to predict 1) who is at risk to develop PTSD and 2) to combine digital biomarkers with
routinely available electronic health records to predict at the point of care who will develop PTSD one month
after ED discharge to plan follow-up specialty care and who is at risk for chronic PTSD. This proposed
prospective longitudinal study will chart PTSD symptoms in a cohort of 350 trauma survivors. The proposed
research is of high clinically significance. The prognostic model will facilitate risk-targeted early interventions
for curtailing delayed treatment, assist clinicians in prioritizing treatment allocation and reduce downstream
health care costs. This research project aims to deliver an objective, accurate, and reliable digital measure for
patients’ well-being. Such digital biomarkers will enable more efficient discharge planning and will promote
early prevention strategies. The mental besides the physical well-being of trauma-survivors admitted to the ED
after a life-threatening event is of high value and is the foundation of a well-functioning, high-quality emergency
care system. The SARS-CoV-2 pandemic, future disasters, or other large-scale emergencies underscore the
critical need to support highly charged EDs through computational methods to better determine risks of long-
term mental health care needs without disrupting the standard operating procedures of acute care.
项目概要/摘要
目前,尚无紧急创伤暴露后创伤后应激的准确预后模型
科室 (ED) 患者可在护理点就诊,无需临床筛查或诊断
拟议的研究基于以下理由:每年 1.39 亿次急诊就诊提供了
在患者仍保持联系的早期阶段主动规划基于风险的后续护理的关键窗口
虽然临床访谈仍然是筛查急性应激的黄金标准。
创伤暴露后的症状,其在临床实践中作为急诊室常规筛查的可行性是
考虑到急诊室的急症护理优先事项,这项研究的长期目标是
开发一个准确、可扩展、实用且可行的预测模型,并且对患者的额外负担较小
ED 程序的总体目标是使用先进的计算方法来提取。
来自视频和音频数据的创伤后应激的客观标记,以在以下位置建立临床读数:
护理将使 ED 能够预测创伤后应激障碍 (PTSD) 的风险。
根据我们的初步数据,我们捕获了语音和言语内容、头部运动、瞳孔扩张、
凝视和情绪的面部标志特征提供了概率信息,使我们能够识别
PTSD 的数字生物标记将通过追求两个具体目标进行测试。
数字生物标记物可预测 1) 谁有患 PTSD 的风险,2) 将数字生物标记物与
常规可用的电子健康记录可在护理时预测谁将在一个月内患上创伤后应激障碍 (PTSD)
急诊室出院后计划后续专业护理以及有慢性 PTSD 风险的人。
前瞻性纵向研究将绘制 350 名创伤幸存者队列中的 PTSD 症状。
研究具有很高的临床意义。预后模型将有助于针对风险的早期干预。
为了减少延迟治疗,协助确定治疗分配的优先顺序并减少下游
该研究项目旨在为医疗保健成本提供客观、准确和可靠的数字测量。
此类数字生物标志物将实现更有效的出院计划,并促进患者的健康。
早期预防策略。
危及生命的事件发生后的处理具有很高的价值,是正常运行、高质量紧急情况的基础
SARS-CoV-2 大流行、未来的灾难或其他大规模紧急情况强调了这一点。
迫切需要通过计算方法来支持高负荷的 ED,以更好地确定长期风险
在不破坏急性护理标准操作程序的情况下满足长期精神卫生保健需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katharina Schultebraucks其他文献
Katharina Schultebraucks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katharina Schultebraucks', 18)}}的其他基金
Early Signs: digital phenotyping to identify digital biomarkers for predicting burnout and cognitive functioning in ED clinicians
早期迹象:通过数字表型分析来识别数字生物标志物,以预测急诊临床医生的倦怠和认知功能
- 批准号:
10298751 - 财政年份:2021
- 资助金额:
$ 83.61万 - 项目类别:
Early Signs: digital phenotyping to identify digital biomarkers for predicting burnout and cognitive functioning in ED clinicians
早期迹象:通过数字表型分析来识别数字生物标志物,以预测急诊临床医生的倦怠和认知功能
- 批准号:
10449250 - 财政年份:2021
- 资助金额:
$ 83.61万 - 项目类别:
Early Signs: digital phenotyping to identify digital biomarkers for predicting burnout and cognitive functioning in ED clinicians
早期迹象:通过数字表型分析来识别数字生物标志物,以预测急诊临床医生的倦怠和认知功能
- 批准号:
10298751 - 财政年份:2021
- 资助金额:
$ 83.61万 - 项目类别:
Early Signs:digital phenotyping to identify digital biomarkers for predicting burnout and cognitive functioning in ED clinicians (Early Signs)
早期迹象:数字表型分析可识别数字生物标志物,用于预测 ED 临床医生的倦怠和认知功能(早期迹象)
- 批准号:
10884739 - 财政年份:2021
- 资助金额:
$ 83.61万 - 项目类别:
相似国自然基金
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
- 批准号:82370157
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
IKZF1-N159Y/S热点突变在急性白血病中的致病机制研究
- 批准号:82300168
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NMNAT1上调B7-H3介导急性早幼粒细胞白血病免疫逃逸的作用和机制研究
- 批准号:82300169
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
支链氨基酸转氨酶1在核心结合因子急性髓细胞白血病中的异常激活与促进白血病发生的分子机制研究
- 批准号:82370178
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
SRSF3/LRP5/Wnt信号通路在急性淋巴细胞白血病中的作用及机制研究
- 批准号:82370128
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
- 批准号:
10759550 - 财政年份:2023
- 资助金额:
$ 83.61万 - 项目类别:
Actionable categories of avoidable hospital care among adults with cancer
成人癌症患者可避免住院治疗的可行类别
- 批准号:
10714125 - 财政年份:2023
- 资助金额:
$ 83.61万 - 项目类别:
GEMRA: Geriatric Emergency Medicine Risk Prediction Model for Return VisitAdmissions
GEMRA:老年急诊医学回访住院风险预测模型
- 批准号:
10587202 - 财政年份:2023
- 资助金额:
$ 83.61万 - 项目类别:
Abdominal Pain in Older Patients in Emergency Departments
急诊科老年患者的腹痛
- 批准号:
10739136 - 财政年份:2023
- 资助金额:
$ 83.61万 - 项目类别:
Point-of-care system to assess the risk of trauma-induced acute respiratory distress syndrome
用于评估创伤引起的急性呼吸窘迫综合征风险的护理点系统
- 批准号:
10594793 - 财政年份:2023
- 资助金额:
$ 83.61万 - 项目类别: