Cloud Computing for AD
AD 云计算
基本信息
- 批准号:10827623
- 负责人:
- 金额:$ 17.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAffectAgingAlgorithmsAllelesAlzheimer associated neurodegenerationAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease modelAlzheimer&aposs disease patientAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAlzheimer’s disease biomarkerAmyloid beta-ProteinApolipoprotein EAttentionAutomobile DrivingAutopsyBackBenignBiological AssayBiological MarkersBiological ModelsBlindedBrainCalculiCandidate Disease GeneCell Culture TechniquesCellsClassificationClinicalClinical assessmentsCloud ComputingCodeCommunitiesDataDementiaDevelopmentDiseaseDisease stratificationDrosophila genusElderlyEvaluationEvolutionFaceFogsFunctional disorderFutureGenderGene Expression ProfileGene ModifiedGene MutationGenesGeneticGenetic MarkersGenomeGenomicsGoalsHeritabilityHumanHuman GenomeIndividualInterventionLinkMachine LearningMedicineMissense MutationModelingMolecularMorbidity - disease rateMusMutationMutation AnalysisNeuronal DysfunctionNeuronsNoiseOnset of illnessOutcomePathogenesisPathogenicityPathway interactionsPatientsPerformancePharmaceutical PreparationsPhenotypePopulationPopulation Attributable RisksPreventiveProteinsRecording of previous eventsRegression AnalysisResearchResolutionRestRiskRisk AssessmentRunningSignal TransductionSocial ImpactsSortingStratificationSymptomsSystemTestingTherapeuticTherapeutic TrialsThinnessTimeTranslatingUntranslated RNAValidationVariantWestern BlottingWomanWorkcausal variantclinical riskcognitive computingcohortdesigndrug developmenteconomic impactexperimental studyfitnessgene discoverygene networkgenetic architecturegenetic variantgenome sequencinggenome wide association studygenomic variationhuman datain vivo evaluationinnovationinsightmachine learning frameworkmathematical analysismathematical learningmathematical modelmennerve stem cellneuropathologyneurotoxicitynovelnovel strategiespreventprogramsrisk stratificationrobot assistancescreeningsocialsuccesstau Proteinstext searchingtheoriestool
项目摘要
Cognitive Computing of Alzheimer’s Disease Genes and Risk
The molecular basis and genetic architecture of dementia remain a puzzle. As no drug yet prevents, delays, or
reverses it, aging populations potentially face a tidal threat of incipient and socially disruptive Alzheimer’s
Disease (AD) cases. Genome-wide association studies (GWAS) have linked over 100 loci with AD and explain
much of population attributable risk, but only a fraction of heritability. This heritability gap means it remains
difficult to design and assess which surveillance, screening, preventive, and stratification programs are effective.
In turn, this hinders therapeutic trials. The challenge in translating genetic variants into patient classifications is
twofold. First, AD is polygenic, so relevant disease driving mutations are spread thin across a multitude of
different genes and patients. Second, current interpretations of the deleterious effects of mutations lack
accuracy, so the impactful few cannot be distinguished from the benign multitude in any given subject. These
problems compound and fog the statistical genetics of AD risk and morbidity with poor signal to noise ratio. The
crux of our solution is to add a massive amount of new information, exploit it efficiently through computation,
then perform rigorous multi-pronged experimental validation. We start from the hypothesis that AD arises through
mutational perturbations that affect functional pathways beyond the built-in evolutionary tolerances. New
algorithms compute these excessive mutational forces and place them in integrative machine learning
frameworks to sort between AD patients and controls, and which can also reflect functional interactions among
proteins or genes. Innovations include a mathematical model of evolution based on calculus; ensemble machine
learning over human genome variations; and harmonic analysis of mutational perturbations in functional
networks. The outcome will, for the first time, integrate genomic variations relevant to AD in the context of all
relevant evolutionary history and all known functional interactions. In practice, this will increase power and
resolution, enable gender-specific analysis and AD stratification of men and women, and identify new and
experimentally validated AD genes. To carry out this program, AIM 1 will fuse a novel mathematical analysis of
evolution with machine learning and network wavelet theory. This will yield complementary integrative
approaches to identify genes and mutations that sort AD vs healthy subjects based on the abnormal mutational
burden of rare gene variants in sequenced cohorts. AIM 2 will focus similar tools on patients and controls with
known paradoxical phenotypes that run counter to their APOEɛ2/4 status. The results will identify modifier genes
that drive AD in APOEɛ2 carriers or that protect APOEɛ4 carriers from AD. AIM 3 will provide direct experimental
validation, leveraging high-throughput, robot-assisted genetic modifier screening in Drosophila models of Tau or
amyloid-beta peptide neurotoxicity. Promising targets will be further confirmed in mammalian neuronal cell
culture. The work will validate a new approach to enlarge our understanding of genetic complexity in Alzheimer’s
Disease for the identification of gene drivers and modifiers to guide clinical assessment of AD risk stratification.
阿尔茨海默病基因和风险的认知计算
痴呆症的分子基础和遗传结构仍然是一个谜,因为目前还没有药物可以预防、延迟或治疗。
相反,老龄化人口可能面临早期和社会破坏性阿尔茨海默氏症的威胁
疾病 (AD) 病例。全基因组关联研究 (GWAS) 已将 100 多个位点与 AD 联系起来并进行了解释。
大部分人口归因于风险,但只有一小部分是遗传性,这种遗传性差距意味着它仍然存在。
很难设计和评估哪些监测、筛查、预防和分层计划是有效的。
反过来,这阻碍了治疗试验将遗传变异转化为患者分类的挑战。
首先,AD 是多基因的,因此相关的疾病驱动突变分散在多个群体中。
其次,目前缺乏对突变有害影响的解释。
准确性,因此在任何特定主题中,无法将有影响力的少数人与良性的多数人区分开来。
由于信噪比较差,这些问题使 AD 风险和发病率的统计遗传学变得更加复杂和模糊。
我们解决方案的关键是添加大量新信息,通过计算有效地利用它,
然后我们从 AD 产生的假设开始进行严格的多管齐下的实验验证。
影响功能途径超出内在进化耐受性的突变扰动。
算法计算这些过度的突变力并将它们放入综合机器学习中
AD 患者和对照组之间的分类框架,也可以反映之间的功能相互作用
创新包括基于微积分的进化数学模型;
了解人类基因组变异;以及功能突变扰动的调和分析
其结果将首次将与 AD 相关的基因组变异整合到所有的背景中。
相关的进化历史和所有已知的功能相互作用在实践中,这将增加力量和能力。
决议,实现性别特定分析和男性和女性的 AD 分层,并确定新的和
为了执行该计划,AIM 1 将融合一种新颖的数学分析。
机器学习和网络小波理论的进化这将产生互补的综合。
识别基因和突变的方法,根据异常突变对 AD 与健康受试者进行分类
AIM 2 测序队列中罕见基因变异的负担将针对患有此病的患者和对照者使用类似的工具。
与 APOEɛ2/4 状态相反的已知矛盾表型 结果将识别修饰基因。
驱动 APOEɛ2 载体中的 AD 或保护 APOEɛ4 载体免受 AIM 3 的影响将提供直接实验。
验证,利用 Tau 或 Tau 果蝇模型中的高通量、机器人辅助遗传修饰筛选
淀粉样蛋白-β肽的神经毒性将在哺乳动物神经细胞中得到进一步证实。
这项工作将验证一种新方法,以扩大我们对阿尔茨海默病遗传复杂性的理解。
用于识别疾病基因驱动因素和修饰因素,以指导 AD 风险分层的临床评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OLIVIER LICHTARGE其他文献
OLIVIER LICHTARGE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OLIVIER LICHTARGE', 18)}}的其他基金
2022 Human Genetic Variation and Disease GRC and GRS
2022人类遗传变异与疾病GRC和GRS
- 批准号:
10468402 - 财政年份:2022
- 资助金额:
$ 17.62万 - 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
- 批准号:
10669697 - 财政年份:2021
- 资助金额:
$ 17.62万 - 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
- 批准号:
10436879 - 财政年份:2021
- 资助金额:
$ 17.62万 - 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
- 批准号:
10219658 - 财政年份:2021
- 资助金额:
$ 17.62万 - 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
- 批准号:
10622973 - 财政年份:2021
- 资助金额:
$ 17.62万 - 项目类别:
A Knowledge Map to Find Alzheimer's Disease Drugs
寻找阿尔茨海默病药物的知识图谱
- 批准号:
9928609 - 财政年份:2018
- 资助金额:
$ 17.62万 - 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
- 批准号:
10163764 - 财政年份:2018
- 资助金额:
$ 17.62万 - 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
- 批准号:
10198233 - 财政年份:2018
- 资助金额:
$ 17.62万 - 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
- 批准号:
9975673 - 财政年份:2018
- 资助金额:
$ 17.62万 - 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
- 批准号:
10456711 - 财政年份:2018
- 资助金额:
$ 17.62万 - 项目类别:
相似国自然基金
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
光老化微塑料持久性自由基对海洋中抗生素抗性基因赋存影响机制
- 批准号:42307503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
任务切换影响相继记忆的脑机制:基于认知老化的视角
- 批准号:32360201
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
生物炭介导下喀斯特耕地土壤微塑料老化及其对Cd有效性的影响机制
- 批准号:42367031
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
内源DOM介导下微塑料的老化过程及对植物的影响机制
- 批准号:42377233
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 17.62万 - 项目类别:
The role of adverse community-level policing exposure on disparities in Alzheimer's disease related dementias and deleterious multidimensional aging
社区层面的不良警务暴露对阿尔茨海默病相关痴呆和有害的多维衰老差异的作用
- 批准号:
10642517 - 财政年份:2023
- 资助金额:
$ 17.62万 - 项目类别:
Maternal inflammation in relation to offspring epigenetic aging and neurodevelopment
与后代表观遗传衰老和神经发育相关的母体炎症
- 批准号:
10637981 - 财政年份:2023
- 资助金额:
$ 17.62万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 17.62万 - 项目类别:
The Effects of Muscle Fatigability on Gait Instability in Aging and Age-Related Falls Risk
肌肉疲劳对衰老步态不稳定性和年龄相关跌倒风险的影响
- 批准号:
10677409 - 财政年份:2023
- 资助金额:
$ 17.62万 - 项目类别: