A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
基本信息
- 批准号:10198233
- 负责人:
- 金额:$ 38.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAddressAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease riskAlzheimer&aposs disease therapyAntigensBenchmarkingBindingBiological MarkersCOVID-19COVID-19 pandemicCalculiCatalysisClinicalClustered Regularly Interspaced Short Palindromic RepeatsCodeCombined Modality TherapyDataDiseaseDisease SurveillanceDockingDrug TargetingEmergency SituationEngineeringEpitopesEvolutionFundingGenesGenetic CodeGenetic MarkersGraphHumanHuman GeneticsImmunotherapyIndividualInfectionKnowledgeLeadLibrariesLifeLinkMachine LearningMapsMeasuresMethodsMissionMorbidity - disease rateMutationOnset of illnessOutputPatient riskPeptide SynthesisPeptidesPharmaceutical PreparationsProtein RegionProteinsProteomeResearchRiskRisk AssessmentSiteSolventsSpeedStructureSurfaceSymptomsTestingTimeTrainingUpdateVariantViral GenesVirulencebasebiobankcase controlclinical riskdisorder riskexomefitnessgenome-wideimprovedknowledge graphmimeticsmortalitynovelnovel strategiesparent grantpeptidomimeticsprediction algorithmpredictive markerpreventprospectiveprospective testprotein functionprotein protein interactionprotein structureprototypesmall moleculesuccesssupport toolstheoriestoolvaccine developmentweb site
项目摘要
ABSTRACT. This Supplement extends Aims 1 and 2 of the parent grant on Alzheimer’s Disease (AD) by
developing: prospective benchmarks for algorithms that predict biomarkers of disease risk (Aim 1) and new
algorithms to support drug repositioning (Aim 2). Both extensions strengthen Aims 1 and 2 for AD but also have
immediate applications for research on COVID-19 disease in keeping with NOT-AG-20-022.
AIM 1 of the parent grant develops EA-ML, a Machine Learning (ML) pipeline to compare coding mutations in
individuals with and without AD. The output is a list of genes with which to predict AD risk from their mutations.
While the parent grant has multiple criteria for success, none are prospective given the vast lead-time between
AD onset and symptoms. Supplemental Aim 1 adds prospective testing, using COVID-19. This is possible
because the UK Biobank has begun to annotate its 50,000 public exomes with the COVID-19 status of
individuals, including who had severe morbidity or mild symptoms at worst. The biobank will also add 150,000
more exomes by end 2020. Accordingly, we will apply EA-ML to the current UK biobank data to identify human
genetic biomarkers that distinguish severe from mild cases and then test EA-ML predictions of COVID-19
virulence prospectively, on the exomes that are newly added to the biobank. As a further new benchmark, we
will also compare EA-ML to a novel “EA-Wavelet” algorithm, also tested prospectively on COVID-19. EA-
Wavelet sorts cases from controls by factoring EA over the entire network of human protein-protein interactions.
The results will tell us which of EA-ML, EA-Wavelet, or combination thereof is the best at identifying
critical biomarkers and clinical risk of AD, while also doing the same for COVID-19.
Aim 2 of the parent grant develops drug repositioning for AD by linking target genes and drugs via knowledge
maps of functional interactions. Here, we propose a complementary approach that connect genes to drugs
via structural maps of binding epitopes. For this we will comprehensively map evolutionarily important sites
in the structural proteome of genes that are associated with AD. The approach exploits EA theory to measure
past and present evolutionary forces in fitness landscapes, and it takes into account current sequence variations
to guard against any possible mutational escape from drugs that target these epitopes. The output will be surface
accessible regions of proteins that can then be used for (i) computational docking of small molecules towards
drug repurposing, combination therapy, and lead discovery for drug design3-5; (ii) engineering mimetic peptides
or other molecules that can inhibit normal interactions6; and (iii) CRISPR engineering or peptide synthesis that
create antigens for more effective vaccines7, 8. These automated mapping tools are general, and besides in
SARS-CoV-2, will identify an entire new structural library of functional sites to target for AD therapy with
repurposed drugs.
摘要:本补充方案将家长补助金的目标 1 和 2 延伸至阿尔茨海默病 (AD)。
正在开发:预测疾病风险生物标志物的算法的前瞻性基准(目标 1)和新的
支持药物重新定位的算法(目标 2)。这两个扩展都加强了 AD 的目标 1 和 2,但也有
根据 NOT-AG-20-022 立即申请有关 COVID-19 疾病的研究。
母基金的 AIM 1 开发了 EA-ML,这是一种机器学习 (ML) 管道,用于比较编码突变
输出是一个基因列表,可通过其突变预测 AD 风险。
虽然家长补助金有多种成功标准,但考虑到两者之间的漫长准备时间,没有一个是预期的。
AD 发病和症状 补充目标 1 增加了使用 COVID-19 的前瞻性测试。
因为英国生物银行已开始注释其 50,000 个公共外显子组,其 COVID-19 状态为
个人,包括患有严重发病或最严重症状轻微的人,生物库还将增加 150,000 名。
到 2020 年底,我们将获得更多外显子组。因此,我们将 EA-ML 应用于当前的英国生物库数据,以识别人类
区分严重病例和轻度病例的遗传生物标志物,然后测试 EA-ML 对 COVID-19 的预测
作为进一步的新基准,我们对新添加到生物库的外显子组进行了毒力预测。
还将将 EA-ML 与新型“EA-Wavelet”算法进行比较,该算法也在 EA-19 上进行了前瞻性测试。
小波通过在人类蛋白质-蛋白质相互作用的整个网络上分解 EA,对病例与对照进行分类。
结果将告诉我们 EA-ML、EA-Wavelet 或其组合中哪一个最适合识别
关键生物标志物和 AD 临床风险,同时也对 COVID-19 进行同样的研究。
母基金的目标 2 通过知识将目标基因和药物联系起来,开发针对 AD 的药物重新定位
在这里,我们提出了一种将基因与药物联系起来的补充方法。
通过结合表位的结构图为此,我们将全面绘制进化上重要的位点。
该方法利用 EA 理论来测量与 AD 相关的基因的结构蛋白质组。
适应度景观中过去和现在的进化力量,并考虑了当前的序列变化
以防止针对这些表位的药物发生任何可能的突变逃逸。输出将是表面的。
蛋白质的可接近区域,然后可用于(i)小分子的计算对接
药物再利用、联合治疗和药物设计的先导化合物发现3-5 (ii) 工程模拟肽;
或其他可以抑制正常相互作用的分子6;以及 (iii) CRISPR 工程或肽合成
为更有效的疫苗创建抗原7、8。这些自动绘图工具很通用,而且还可以用于
SARS-CoV-2 将确定一个全新的功能位点结构库,用于 AD 治疗
重新利用药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OLIVIER LICHTARGE其他文献
OLIVIER LICHTARGE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OLIVIER LICHTARGE', 18)}}的其他基金
2022 Human Genetic Variation and Disease GRC and GRS
2022人类遗传变异与疾病GRC和GRS
- 批准号:
10468402 - 财政年份:2022
- 资助金额:
$ 38.66万 - 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
- 批准号:
10669697 - 财政年份:2021
- 资助金额:
$ 38.66万 - 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
- 批准号:
10436879 - 财政年份:2021
- 资助金额:
$ 38.66万 - 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
- 批准号:
10219658 - 财政年份:2021
- 资助金额:
$ 38.66万 - 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
- 批准号:
10622973 - 财政年份:2021
- 资助金额:
$ 38.66万 - 项目类别:
A Knowledge Map to Find Alzheimer's Disease Drugs
寻找阿尔茨海默病药物的知识图谱
- 批准号:
9928609 - 财政年份:2018
- 资助金额:
$ 38.66万 - 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
- 批准号:
10163764 - 财政年份:2018
- 资助金额:
$ 38.66万 - 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
- 批准号:
9975673 - 财政年份:2018
- 资助金额:
$ 38.66万 - 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
- 批准号:
10456711 - 财政年份:2018
- 资助金额:
$ 38.66万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
De novo design of a generalizable protein biosensor platform for point-of-care testing
用于即时测试的通用蛋白质生物传感器平台的从头设计
- 批准号:
10836196 - 财政年份:2023
- 资助金额:
$ 38.66万 - 项目类别:
Programmable peptide-guided protein degradation
可编程肽引导的蛋白质降解
- 批准号:
10741655 - 财政年份:2023
- 资助金额:
$ 38.66万 - 项目类别:
Discovery-Driven Mathematics and Artificial Intelligence for Biosciences and Drug Discovery
用于生物科学和药物发现的发现驱动数学和人工智能
- 批准号:
10551576 - 财政年份:2023
- 资助金额:
$ 38.66万 - 项目类别:
Leveraging Pathogen-Host Networks to Identify Virus-specific and Estradiol-regulated Mechanisms during Respiratory Infection
利用病原体宿主网络来识别呼吸道感染期间的病毒特异性和雌二醇调节机制
- 批准号:
10741119 - 财政年份:2023
- 资助金额:
$ 38.66万 - 项目类别:
Next generation implicit solvation for atomistic modeling
用于原子建模的下一代隐式溶剂化
- 批准号:
10344019 - 财政年份:2022
- 资助金额:
$ 38.66万 - 项目类别: