Evolutionary dynamics and microenvironmental determinants of metastatic breast cancer
转移性乳腺癌的进化动力学和微环境决定因素
基本信息
- 批准号:10704647
- 负责人:
- 金额:$ 153.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-14 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressBiological ModelsBreastBreast Cancer ModelBreast Cancer PatientBreast cancer metastasisCRISPR screenCRISPR/Cas technologyCancer RelapseCell CommunicationCellsClassificationClinicalCollectionComputer ModelsDataDependenceDevelopmentDiagnosisDiseaseERBB2 geneEstrogen receptor positiveExperimental ModelsGenomic approachGenomicsGoalsImageImmuneImmune systemIn SituLeadLongitudinal cohortMachine LearningMacrophageMalignant NeoplasmsMetastatic breast cancerModelingMolecularMolecular ProfilingMultiplexed Ion Beam ImagingNatureNeoplasm MetastasisNon-linear ModelsOncogenicOrganoidsOutcomePathologistPathologyPatientsPhagocytosisPopulationPrimary NeoplasmProcessPropertyRelapseResearch Project GrantsResearch SupportResistanceResolutionResource SharingSamplingSiteSpatial DistributionSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationStromal CellsSubgroupSystemSystems BiologyTechnologyTherapeuticTimeTissue ModelTissue SampleTissuesTumor TissueVisionVisualizationbeanbiobankbreast cancer progressioncancer cellcohortcomputer frameworkcomputerized toolsdata integrationdisease heterogeneityfunctional genomicsgenome-widehigh riskhormone therapyinnovationinventionmalignant breast neoplasmmultidisciplinaryneoplastic cellprospectiverelapse riskresponsesingle cell technologytargeted treatmenttherapeutic targettherapy resistanttissue resourcetriple-negative invasive breast carcinomatumor
项目摘要
Abstract/Project Summary
Metastatic breast cancer and relapse following therapy are dependent on (1) development of intrinsic resistance
to targeted and endocrine therapies, and (2) resistance to recognition and destruction of cancer cells by the
immune system. The Stanford Breast Metastasis Center (SBMC) is focused on (1) quantifying the timing of
metastatic dissemination in breast cancer (2) functionally delineating the contribution of cellular and
microenvironmental crosstalk on metastatic proclivity, and (3) characterizing the mechanisms of responses by
metastatic cells to therapies.
In order to achieve these goals, mechanistic computational models that capture dynamic and
emergent tumor cell intrinsic and extrinsic properties are needed as are clinically annotated longitudinal
tissue cohorts and experimental models that capture disease heterogeneity. The SBMC addresses each of these
outstanding challenges. First, we have established an unparalleled collection of clinically annotated breast
cancer cohorts sampled through treatment and metastasis, including both prospective and retrospective
longitudinal cohorts, with multiple metastatic sites. We leverage a living biobank of breast cancer patient-
derived organoids (PDOs) from primary tumors and metastases that recapitulate the heterogeneity of
disease, high-risk of relapse subgroups and tumor-immune interactions and greatly facilitating the proposed
functional studies. We characterize these vast tissue resources and model systems using state-of-the-art
molecular profiling technologies to probe tumor tissue in situ at single cell and subcellular resolution. Specifically,
with Multiplexed Ion Beam Imaging by Time of Flight (MIBI-TOF) and matrix-assisted laser desorption ionization
imaging (MALDI) we simultaneously visualize the composition, lineage, function and spatial distribution of tumor
and stromal cell populations and perform co-registered analysis of the glycome. We integrate these data within
the genomic landscape of metastatic disease and analyze these data within robust machine learning and
computational frameworks to uncover disease dynamics and features associated with clinical outcomes.
Lastly, we conduct genome-scale CRISPR screens in 3D breast cancer models to systematically define
oncogenic dependencies, therapeutic vulnerabilities and macrophage-tumor cell interactions.
This integrated systems biology and functional genomics approach will contribute to a quantitative and
mechanistic understanding of metastatic breast cancer and the dynamic relationship between tumor cells and
the host, with implications for therapeutic targeting.
摘要/项目摘要
转移性乳腺癌和治疗后的复发取决于 (1) 内在耐药性的发展
靶向和内分泌治疗,以及(2)对癌细胞识别和破坏的抵抗力
免疫系统。斯坦福乳腺转移中心 (SBMC) 的重点是 (1) 量化发生转移的时间
乳腺癌的转移性播散 (2) 功能性地描绘了细胞和细胞的贡献
微环境串扰对转移倾向的影响,以及(3)通过以下方式表征反应机制:
转移细胞接受治疗。
为了实现这些目标,捕获动态和数据的机械计算模型
需要新出现的肿瘤细胞的内在和外在特性,以及临床注释的纵向
捕获疾病异质性的组织队列和实验模型。 SBMC 解决了其中的每一个问题
突出的挑战。首先,我们建立了无与伦比的临床注释乳房数据库
通过治疗和转移取样的癌症队列,包括前瞻性和回顾性
纵向队列,具有多个转移部位。我们利用乳腺癌患者的活体生物库-
来自原发性肿瘤和转移瘤的衍生类器官(PDO),概括了肿瘤的异质性
疾病、复发亚组的高风险以及肿瘤-免疫相互作用,并极大地促进了拟议的
功能研究。我们使用最先进的技术来描述这些巨大的组织资源和模型系统
分子分析技术以单细胞和亚细胞分辨率原位探测肿瘤组织。具体来说,
采用飞行时间多重离子束成像 (MIBI-TOF) 和基质辅助激光解吸电离
成像 (MALDI) 我们同时可视化肿瘤的组成、谱系、功能和空间分布
和基质细胞群,并对糖组进行联合注册分析。我们将这些数据整合到
转移性疾病的基因组景观,并在强大的机器学习中分析这些数据,
揭示与临床结果相关的疾病动态和特征的计算框架。
最后,我们在 3D 乳腺癌模型中进行基因组规模的 CRISPR 筛选,以系统地定义
致癌依赖性、治疗脆弱性和巨噬细胞-肿瘤细胞相互作用。
这种综合系统生物学和功能基因组学方法将有助于定量和
对转移性乳腺癌的机制认识以及肿瘤细胞与乳腺癌之间的动态关系
宿主,对治疗靶向有影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christina N Curtis其他文献
Christina N Curtis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christina N Curtis', 18)}}的其他基金
Evolutionary dynamics and microenvironmental determinants of metastatic breast cancer
转移性乳腺癌的进化动力学和微环境决定因素
- 批准号:
10819066 - 财政年份:2021
- 资助金额:
$ 153.22万 - 项目类别:
Stanford Breast Metastasis Center Administrative Core
斯坦福乳腺转移中心行政核心
- 批准号:
10704683 - 财政年份:2021
- 资助金额:
$ 153.22万 - 项目类别:
Evolutionary dynamics and microenvironmental determinants of metastatic breast cancer
转移性乳腺癌的进化动力学和微环境决定因素
- 批准号:
10660804 - 财政年份:2021
- 资助金额:
$ 153.22万 - 项目类别:
Evolutionary dynamics and microenvironmental determinants of metastatic breast cancer
转移性乳腺癌的进化动力学和微环境决定因素
- 批准号:
10272387 - 财政年份:2021
- 资助金额:
$ 153.22万 - 项目类别:
Project 1:Evolutionary dynamics and drivers of breast cancer metastasis and relapse
项目1:乳腺癌转移和复发的进化动力学和驱动因素
- 批准号:
10272389 - 财政年份:2021
- 资助金额:
$ 153.22万 - 项目类别:
Stanford Breast Metastasis Center Administrative Core
斯坦福乳腺转移中心行政核心
- 批准号:
10272388 - 财政年份:2021
- 资助金额:
$ 153.22万 - 项目类别:
Project 1:Evolutionary dynamics and drivers of breast cancer metastasis and relapse
项目1:乳腺癌转移和复发的进化动力学和驱动因素
- 批准号:
10704684 - 财政年份:2021
- 资助金额:
$ 153.22万 - 项目类别:
Forecasting tumor evolution: can the past reveal the future?
预测肿瘤进化:过去能否揭示未来?
- 批准号:
10455013 - 财政年份:2018
- 资助金额:
$ 153.22万 - 项目类别:
Forecasting tumor evolution: can the past reveal the future?
预测肿瘤进化:过去能否揭示未来?
- 批准号:
10224138 - 财政年份:2018
- 资助金额:
$ 153.22万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mitochondrial dysfunction and tau pathology in Alzheimer's disease
阿尔茨海默病中的线粒体功能障碍和 tau 病理学
- 批准号:
10805120 - 财政年份:2023
- 资助金额:
$ 153.22万 - 项目类别:
Extending experimental evolutionary game theory in cancer in vivo to enable clinical translation: integrating spatio-temporal dynamics using mathematical modeling
扩展癌症体内实验进化博弈论以实现临床转化:使用数学建模整合时空动力学
- 批准号:
10662098 - 财政年份:2023
- 资助金额:
$ 153.22万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 153.22万 - 项目类别:
Project 2: Ex Vivo Modeling and Analysis of Gastric Precancerous Lesions
项目2:胃癌前病变的离体建模与分析
- 批准号:
10715763 - 财政年份:2023
- 资助金额:
$ 153.22万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 153.22万 - 项目类别: