Bay Area Cancer Target Discovery and Development
湾区癌症靶标的发现和开发
基本信息
- 批准号:10704172
- 负责人:
- 金额:$ 97.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-13 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AreaAutomobile DrivingBenignBiogenesisBiologicalBreast AdenocarcinomaCRISPR/Cas technologyCalibrationCancer cell lineCell Culture TechniquesCellsClinicalClustered Regularly Interspaced Short Palindromic RepeatsDataDevelopmentDistalDrug TargetingDrug ToleranceDrug resistanceEpigenetic ProcessEventEvolutionExhibitsFertilizationFoundationsFundingGene CombinationsGenesGeneticGenetic ScreeningGenotypeGoalsGrowthHeterogeneityHumanIn VitroInflammatoryJointsLung AdenocarcinomaMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of lungMethodologyModelingMolecularMolecular TargetMutationOncogenesPathogenicityPathway interactionsPhenotypePhylogenetic AnalysisProcessReagentRecurrenceResearchResearch Project GrantsResistanceResolutionRoleSolidSynthetic GenesSystemSystems BiologyTechnologyThe Cancer Genome AtlasTherapeuticTimeTissuesTumor Suppressor GenesWorkcancer cellcancer subtypescancer typecell behaviorcell transformationcell typeclinical translationclinically relevanthigh throughput technologyimprovedin vivoinnovationinsightmouse modelneoplastic cellnext generationnovelnovel therapeuticspatient derived xenograft modelpatient stratificationpharmacologicpremalignantprogramssingle-cell RNA sequencingsynergismsynthetic biologytherapeutic targettherapeutically effectivetherapy resistanttooltreatment responsetumortumor growthtumor heterogeneitytumorigenesis
项目摘要
PROJECT SUMMARY
Our general strategy is to take advantage of novel tools and methodologies that we have developed
during our first two CTD^2 funding periods– more specifically pioneering and applying CRISPR based
technologies to aid the discovery and characterization of novel cancer targets and their modulators–
using innovative high throughput technologies. Our end goal is to uncover optimal combinations of
targets with the potential to eliminate all cancer cells, despite their clonal heterogeneity and
environmental context. This requires us to better understand tumor biogenesis, namely the
combinations of genes that drive oncogenesis, and tumor heterogeneity which complicates effective
therapeutic treatment.
In this proposal we build upon exciting systems allowing us to quantitate genotypic and phenotypic cell
heterogeneity in cell culture and in vivo. The overall goal is to identify synthetic gene combinations
necessary for clinical resistance and related to inter- and intra-tumor heterogeneity. We hypothesize
that altered cell states such as inflammatory phenotypes and lineage plasticity fuels therapy tolerance
and resistance. We apply single-cell approaches and cutting-edge lineage tracing tools to investigate
the genesis of pathogenic cellular state changes and use genetic screening, computational and
pharmacologic approaches, and clinically relevant in vitro and in vivo tumor models to identify
mechanistically calibrated, specific therapeutic vulnerabilities. These approaches will be applied to two
cancer, lung and breast adenocarcinoma.
Tumor biogenesis and evolution is a challenging area of research, largely due to the complexity of cell
types and behaviors and the combinations of genes that drive cancer types and subtypes is poorly
understood. We have developed next generation GEMMs to interrogate gene combinations that
promote cancer. In this aim, mouse models will be generated that contain combinations of genetic
perturbations of the top 30 TCGA recurrent mutations. These studies will associate the combination of
perturbagens with specific cell states, despite their clonal heterogeneity and cell state and lay a solid
foundation for identifying which combinations of recurrent genes respond to which therapy, thus
helping to stratify patients. This part of the research program focuses on lung cancer as it synergizes
with other components of the proposal. We apply an evolved lineage tracing technology with single
cell RNA-seq readout that lets us follow tumor evolution with unprecedented resolution. These studies
will help us understand how tumor plasticity enables cancers to evade therapeutic challenges. And
importantly, how the loss of tumor suppressor genes or gene combinations, alters the preferred
evolutionary paths a single transformed cell takes to reach aggressive and metastatic states.
项目概要
我们的总体策略是利用我们开发的新颖工具和方法
在我们的前两个 CTD^2 资助期间 - 更具体地说是基于 CRISPR 的开拓和应用
帮助发现和表征新的癌症靶点及其调节剂的技术–
我们的最终目标是使用创新的高通量技术来发现最佳组合。
尽管具有克隆异质性,但具有消除所有癌细胞的潜力的目标
这需要我们更好地了解肿瘤的生物发生,即肿瘤的发生。
驱动肿瘤发生的基因组合以及使有效治疗变得复杂的肿瘤异质性
治疗性治疗。
在这项提案中,我们建立了令人兴奋的系统,使我们能够定量基因型和表型细胞
细胞培养和体内异质性的总体目标是识别合成基因组合。
临床耐药性所必需的,并且与肿瘤间和肿瘤内异质性相关。
改变细胞状态,如炎症表型和谱系可塑性,增强治疗耐受性
我们应用单细胞方法和尖端的谱系追踪工具来研究。
致病性细胞状态变化的起源并使用遗传筛选、计算和
药理学方法以及临床相关的体外和体内肿瘤模型来识别
这些方法将应用于两个经过机械校准的特定治疗漏洞。
癌症、肺癌和乳腺癌。
肿瘤的生物发生和进化是一个具有挑战性的研究领域,很大程度上是由于细胞的复杂性
类型和行为以及驱动癌症类型和亚型的基因组合很差
我们已经开发了下一代 GEMM 来询问基因组合。
为了实现这一目标,将产生包含遗传组合的小鼠模型。
这些研究将前 30 个 TCGA 复发突变的扰动与以下组合相关联。
具有特定细胞状态的扰动物,尽管它们的克隆异质性和细胞状态并奠定了坚实的基础
确定哪些重复基因组合对哪种治疗有反应的基础,从而
帮助对患者进行分层,这部分研究项目重点关注肺癌,因为它具有协同作用。
与该提案的其他组成部分一起,我们应用了一种进化的谱系追踪技术。
细胞 RNA 测序读数让我们能够以前所未有的分辨率追踪肿瘤的进化。
将帮助我们了解肿瘤可塑性如何使癌症逃避治疗挑战。
重要的是,肿瘤抑制基因或基因组合的丢失如何改变首选
单个转化细胞达到侵袭和转移状态所需的进化路径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sourav Bandyopadhyay其他文献
Sourav Bandyopadhyay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sourav Bandyopadhyay', 18)}}的其他基金
Bay Area Cancer Target Discovery and Development
湾区癌症靶标的发现和开发
- 批准号:
10504993 - 财政年份:2022
- 资助金额:
$ 97.66万 - 项目类别:
Stress responses drive resistance and shape tumor evolution in EGFR mutant lung cancer
应激反应驱动EGFR突变肺癌的耐药性并塑造肿瘤进化
- 批准号:
10329992 - 财政年份:2020
- 资助金额:
$ 97.66万 - 项目类别:
Stress responses drive resistance and shape tumor evolution in EGFR mutant lung cancer
应激反应驱动EGFR突变肺癌的耐药性并塑造肿瘤进化
- 批准号:
9887321 - 财政年份:2020
- 资助金额:
$ 97.66万 - 项目类别:
Stress responses drive resistance and shape tumor evolution in EGFR mutant lung cancer
应激反应驱动EGFR突变肺癌的耐药性并塑造肿瘤进化
- 批准号:
10552632 - 财政年份:2020
- 资助金额:
$ 97.66万 - 项目类别:
The Cancer Target Discovery and Development Network at UCSF
加州大学旧金山分校癌症靶标发现和开发网络
- 批准号:
10210200 - 财政年份:2017
- 资助金额:
$ 97.66万 - 项目类别:
The Cancer Target Discovery and Development Network at UCSF
加州大学旧金山分校癌症靶标发现和开发网络
- 批准号:
9753177 - 财政年份:2017
- 资助金额:
$ 97.66万 - 项目类别:
The Cancer Target Discovery and Development Network at UCSF
加州大学旧金山分校癌症靶标发现和开发网络
- 批准号:
10210200 - 财政年份:2017
- 资助金额:
$ 97.66万 - 项目类别:
Physical and Genetic Interaction Landscape of the Tyrosine Kinome
酪氨酸激酶的物理和遗传相互作用景观
- 批准号:
9309044 - 财政年份:2014
- 资助金额:
$ 97.66万 - 项目类别:
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
兼顾效率与能效的城市道路智能网联汽车驾驶行为优化及实证研究
- 批准号:71871028
- 批准年份:2018
- 资助金额:46.0 万元
- 项目类别:面上项目
汽车驾驶员疲劳的心理生理检测及神经机制
- 批准号:31771225
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Antigen presentation to the adaptive immune system in the choroid contributes to ocular autoimmune disease
脉络膜中的适应性免疫系统的抗原呈递导致眼部自身免疫性疾病
- 批准号:
10740465 - 财政年份:2023
- 资助金额:
$ 97.66万 - 项目类别:
Synthetic lethal metabolic drug combinations for castration-resistant prostate cancer
治疗去势抵抗性前列腺癌的合成致死代谢药物组合
- 批准号:
10661960 - 财政年份:2023
- 资助金额:
$ 97.66万 - 项目类别:
Defining the changing microbiome composition and host-microbe mechanistic effects following Apc inactivation during colorectal cancer pathogenesis
定义结直肠癌发病过程中 Apc 失活后微生物组组成的变化和宿主微生物机制效应
- 批准号:
10750676 - 财政年份:2023
- 资助金额:
$ 97.66万 - 项目类别:
Bay Area Cancer Target Discovery and Development
湾区癌症靶标的发现和开发
- 批准号:
10504993 - 财政年份:2022
- 资助金额:
$ 97.66万 - 项目类别:
Comprehensive validation and commercial readiness of SpliceIO, a software platform for neoantigen discovery using RNA-seq data
SpliceIO 的全面验证和商业准备,这是一个使用 RNA-seq 数据发现新抗原的软件平台
- 批准号:
10647773 - 财政年份:2022
- 资助金额:
$ 97.66万 - 项目类别: