Image-based modeling of functional connectivity in neural networks at single-cell resolution

单细胞分辨率神经网络功能连接的基于图像的建模

基本信息

  • 批准号:
    10689050
  • 负责人:
  • 金额:
    $ 12.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-21 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Calcium fluorescence imaging has opened unprecedented opportunities to investigate how neurons are wired in circuits that plastically process information in the brain. Recent advances in microscopy and genetically encoded calcium indicators allow us to record in real time the transient rises of intracellular Ca2+ for a large population of neurons during their electrical activity. However, little is known about mechanisms of information processing in neural circuits at the single neuron level. Even though cutting-edge technologies are capable of optically probing thousands of neurons firing in relation to stimulation or behavior output, we are still unable to track the propagation of the neuron firing events. The key barrier to progress is the lack of computational technologies in image and signal processing for the calcium imaging data. A common but unresolved obstacle to collect calcium activities of neurons from acquired images is deformation of live tissues during imaging. The goal of the project for image processing is to develop an algorithm to automatically extract accurate traces of single-neuron activity from deforming 3D calcium images. A new approach under development generates a dynamic region-of-interest for each jittering and blinking neuron by iteratively learning neuronal identities from local images of firing neurons. As a next step, the goal for signal processing is to develop statistical inference frameworks that can assess the evidence of information flows from external stimuli to sensory neurons, and between interconnected neurons. The responsiveness of neurons upon stimulation will be statistically determined based on an autoregressive hidden Markov model. We will identify causal hierarchy among neuronal activities using Granger-causality inference, in order to reconstruct the functional connectivity networks for large-scale neuronal populations. Subsequent graph theoretical quantification of the connectivity networks at the single-neuron level will enable us to differentiate wiring architectures of neural circuits under different molecular conditions. The long-term career goal of the candidate, Dr. Noh, is to establish an independent research program specialized in image-based stochastic modeling of dynamic nervous systems by translating his expertise in statistics and time series analysis. The training objective of this proposal is to allow Dr. Noh to make a unique contribution to computational methods for complex neuroimaging data and its dynamics, and to train Dr. Noh to gain the ability to conduct hypothesis-driven research for neuroscience by himself. The proposed training is guided by Gaudenz Danuser and Julian Meeks, who are leaders in the fields of computational cell biology and neurobiology, respectively. Being engaged in diverse environment of informatics/experiments and neurobiology, Dr. Noh will immerse himself into neuroscience, acquire experiential learning of neuroimaging experiments, and gain expertise in multidisciplinary team science. The completion of this proposal will enable Dr. Noh not only to establish his groundwork for research in neuroimaging, but also to play leading roles in multidisciplinary research.
项目概要/摘要 钙荧光成像为研究神经元如何连接提供了前所未有的机会 大脑中可塑性处理信息的电路。显微镜和基因编码的最新进展 钙指标使我们能够实时记录大量细胞内 Ca2+ 的瞬时升高。 神经元在电活动期间。然而,人们对信息处理机制知之甚少。 单神经元水平的神经回路。尽管尖端技术能够进行光学探测 数千个与刺激或行为输出相关的神经元放电,我们仍然无法追踪 神经元放电事件的传播。进步的主要障碍是缺乏计算技术 钙成像数据的图像和信号处理。收集钙的一个常见但尚未解决的障碍 所获取图像中的神经元活动是成像过程中活体组织的变形。项目目标 图像处理的目标是开发一种算法来自动提取单神经元活动的准确痕迹 3D 钙图像变形。正在开发的新方法产生了动态的兴趣区域 通过从放电神经元的局部图像中迭代学习神经元身份,针对每个抖动和闪烁的神经元。 下一步,信号处理的目标是开发统计推断框架来评估 信息从外部刺激流向感觉神经元以及相互连接的神经元之间的证据。 神经元对刺激的反应性将根据自回归进行统计确定 隐马尔可夫模型。我们将使用格兰杰因果关系来识别神经元活动之间的因果层次 推理,以便重建大规模神经元群体的功能连接网络。 单神经元水平连接网络的后续图论量化将使我们能够 区分不同分子条件下神经回路的布线结构。 候选人Noh博士的长期职业目标是建立一个专门的独立研究项目 通过将他在统计学和 时间序列分析。该提案的培训目标是让Noh博士能够为以下领域做出独特的贡献: 复杂神经影像数据及其动力学的计算方法,并训练 Noh 博士获得这种能力 自己进行神经科学的假设驱动研究。拟议的培训由 Gaudenz 指导 Danuser 和 Julian Meeks 是计算细胞生物学和神经生物学领域的领导者, 分别。从事信息学/实验和神经生物学的多样化环境,Noh博士将 沉浸在神经科学中,获得神经影像实验的体验式学习,并获得 多学科团队科学的专业知识。该提案的完成将使Noh博士不仅能够 为他的神经影像学研究奠定基础,同时也在多学科研究中发挥主导作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jungsik Noh其他文献

Jungsik Noh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jungsik Noh', 18)}}的其他基金

Image-based modeling of functional connectivity in neural networks at single-cell resolution
单细胞分辨率神经网络功能连接的基于图像的建模
  • 批准号:
    10054899
  • 财政年份:
    2020
  • 资助金额:
    $ 12.69万
  • 项目类别:
Image-based modeling of functional connectivity in neural networks at single-cell resolution
单细胞分辨率神经网络功能连接的基于图像的建模
  • 批准号:
    10472680
  • 财政年份:
    2020
  • 资助金额:
    $ 12.69万
  • 项目类别:
Image-based modeling of functional connectivity in neural networks at single-cell resolution
单细胞分辨率神经网络功能连接的基于图像的建模
  • 批准号:
    10266100
  • 财政年份:
    2020
  • 资助金额:
    $ 12.69万
  • 项目类别:

相似海外基金

Sex-specific role of androgen signaling in neuroendocrine-behavior interface
雄激素信号在神经内分泌行为界面中的性别特异性作用
  • 批准号:
    10659301
  • 财政年份:
    2023
  • 资助金额:
    $ 12.69万
  • 项目类别:
Mammalian bile acid detection, processing and impact on social behavior
哺乳动物胆汁酸检测、处理及其对社会行为的影响
  • 批准号:
    10847177
  • 财政年份:
    2023
  • 资助金额:
    $ 12.69万
  • 项目类别:
Circuit Mechanism of Pheromone Processing and Innate Behavior
信息素加工和先天行为的回路机制
  • 批准号:
    10601689
  • 财政年份:
    2023
  • 资助金额:
    $ 12.69万
  • 项目类别:
Social Information Processing in the Vomeronasal System during Active Behavior
主动行为期间犁鼻系统的社会信息处理
  • 批准号:
    10751849
  • 财政年份:
    2023
  • 资助金额:
    $ 12.69万
  • 项目类别:
Characterizing the primary olfactory subregions of the human amygdala
表征人类杏仁核的主要嗅觉分区
  • 批准号:
    10594449
  • 财政年份:
    2021
  • 资助金额:
    $ 12.69万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了