Evaluating Effectiveness and Implementation of a Risk Model for Suicide Prevention Across Health Systems
评估跨卫生系统自杀预防风险模型的有效性和实施
基本信息
- 批准号:10689266
- 负责人:
- 金额:$ 76.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-23 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdoptedAdultBioinformaticsCaringClinicClinicalClinical DataCollaborationsComputer ModelsDataEffectivenessElectronic Health RecordElementsEmergency SituationEnsureFailureFeedbackFundingHealthHealth Care VisitHealth InsuranceHealth ServicesHealth systemHealthcareHybridsIndividualInpatientsInterventionLeadershipMeasuresMedicare/MedicaidMental HealthMichiganMinnesotaModelingMonitorMovementNational Institute of Mental HealthOregonOutcomeOutpatientsPatient Self-ReportPatientsPilot ProjectsPopulation HeterogeneityPrevention approachProcessProcess AssessmentPublic HealthQuestionnairesRandomizedReach, Effectiveness, Adoption, Implementation, and MaintenanceResearchResolutionRiskServicesSeveritiesSiteSuicideSuicide attemptSuicide preventionSystemTestingUnited StatesWashingtonadvanced systembehavioral healthclinical applicationclinical implementationcostdata infrastructuredesigneffectiveness evaluationeffectiveness measureeffectiveness outcomeeffectiveness/implementation trialhealth care settingshealth recordimplementation designimplementation evaluationimplementation outcomesimplementation questionsimprovedinnovationinstrumentinsurance claimsinterestmedical specialtiesmemberpatient populationpragmatic implementationpragmatic trialpreferencepreventprevention servicereducing suicideresponserisk predictionscreeningservice engagementstatisticssuicidal risksuicide modeltime usetooltreatment as usualtrial design
项目摘要
PROJECT SUMMARY/ABSTRACT: Suicide is a major public health concern in the United States; nearly
50,000 individuals die by suicide annually and almost 1.5 million attempt suicide. To date, identification of
individuals at risk for suicide has relied on suicide risk screening practices, including using a variety of self-
report instruments. However, sensitivity of these measures are only moderate; more precise tools for
identifying patients at risk for suicide are needed. Suicide risk models, developed by our team, incorporate
health records data and historical self-report screening questionnaire responses to improve accuracy of risk
prediction. Our models have outperformed traditional clinical screening and similar risk models for adults
receiving care in outpatient mental health specialty settings. However, while accurate, they have not been
evaluated in real world care; whether the models actually increase identification or result in patients receiving
more suicide prevention services, fewer crisis services, or making fewer suicide attempts is unknown. There
is substantial clinical interest in implementing suicide risk models but little scientific evidence about the
effectiveness of these models in real world settings compared to standard screening practices alone.
Additionally, there is almost no guidance for their implementation in healthcare. The proposed project
leverages the NIMH-funded Mental Health Research Network (MHRN), a collaboration of large health
systems with established clinical data infrastructure to support multi-site studies. MHRN members Henry
Ford Health System, Kaiser Permanente Northwest, and HealthPartners will participate in this project and
collectively serve >170,000 behavioral health patients per year. The patient populations are diverse,
including thousands of individuals with Medicaid and Medicare. Each of these systems has implemented a
suicide prevention care model in their behavioral health departments, including robust suicide risk screening
and assessment processes. However, none of these systems has implemented a suicide risk model. The
proposed project includes a pragmatic trial approach with randomization of behavioral health clinics across
the three participating health systems. It is innovative because it seeks to implement an MHRN suicide risk
model (intervention) into each system's existing suicide prevention care model (usual care) to increase the
reach and effectiveness of the suicide prevention care models. Sites will receive implementation planning
support based on stakeholder feedback from preliminary studies and deliverables include an implementation
planning tool kit to facilitate spread. This high-impact study has important clinical implications as health
systems consider whether it makes sense to enhance their existing suicide prevention care models with a
suicide risk model. It is timely because many health systems are advancing toward suicide risk model
implementation without evidence to support this innovation.
项目摘要/摘要:自杀是美国的一个主要公共卫生问题;几乎
每年有 50,000 人死于自杀,近 150 万人试图自杀。迄今为止,鉴定
有自杀风险的个人依赖于自杀风险筛查做法,包括使用各种自我评估方法
报告文书。然而,这些措施的敏感性仅为中等;更精确的工具
需要识别有自杀风险的患者。我们团队开发的自杀风险模型包含
健康记录数据和历史自我报告筛查问卷答复,以提高风险的准确性
预言。我们的模型优于传统的临床筛查和类似的成人风险模型
在门诊心理健康专业机构接受护理。然而,虽然准确,但它们并未被
在现实世界的护理中进行评估;这些模型是否确实增加了识别或导致患者接受
更多的自杀预防服务、更少的危机服务或更少的自杀企图都是未知的。那里
对实施自杀风险模型有很大的临床兴趣,但关于自杀风险模型的科学证据很少
与单独的标准筛选实践相比,这些模型在现实世界中的有效性。
此外,几乎没有关于其在医疗保健领域实施的指导。拟议项目
利用 NIMH 资助的心理健康研究网络 (MHRN),该网络是大型医疗机构的合作项目
具有已建立的临床数据基础设施的系统来支持多站点研究。 MHRN 成员亨利
福特医疗系统、Kaiser Permanente Northwest 和 HealthPartners 将参与该项目,
每年总共服务超过 170,000 名行为健康患者。患者群体多种多样,
包括数千名享受医疗补助和医疗保险的个人。这些系统中的每一个都实现了
行为健康部门的自杀预防护理模式,包括强有力的自杀风险筛查
和评估流程。然而,这些系统都没有实现自杀风险模型。这
拟议的项目包括一种务实的试验方法,将行为健康诊所随机化
三个参与的卫生系统。它具有创新性,因为它旨在实施 MHRN 自杀风险
将模型(干预)纳入每个系统现有的自杀预防护理模型(常规护理)中,以增加
自杀预防护理模式的覆盖范围和有效性。站点将收到实施计划
基于利益相关者对初步研究和可交付成果的反馈的支持,包括实施
规划工具包以促进传播。这项高影响力的研究对于健康具有重要的临床意义
系统考虑通过以下方式增强现有的自杀预防护理模式是否有意义:
自杀风险模型。这是及时的,因为许多卫生系统正在向自杀风险模型迈进
实施没有证据支持这一创新。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BobbiJo H. Yarborough其他文献
BobbiJo H. Yarborough的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BobbiJo H. Yarborough', 18)}}的其他基金
Evaluating Effectiveness and Implementation of a Risk Model for Suicide Prevention Across Health Systems
评估跨卫生系统自杀预防风险模型的有效性和实施
- 批准号:
10509346 - 财政年份:2022
- 资助金额:
$ 76.94万 - 项目类别:
Stakeholder Perspectives on Implementing Suicide Risk Prediction Models
利益相关者对实施自杀风险预测模型的看法
- 批准号:
10021736 - 财政年份:2019
- 资助金额:
$ 76.94万 - 项目类别:
Stakeholder Perspectives on Implementing Suicide Risk Prediction Models
利益相关者对实施自杀风险预测模型的看法
- 批准号:
10197808 - 财政年份:2019
- 资助金额:
$ 76.94万 - 项目类别:
Predictive modeling: the role of opioid use in suicide risk
预测模型:阿片类药物的使用在自杀风险中的作用
- 批准号:
9927866 - 财政年份:2018
- 资助金额:
$ 76.94万 - 项目类别:
Predictive modeling: the role of opioid use in suicide risk
预测模型:阿片类药物的使用在自杀风险中的作用
- 批准号:
9755394 - 财政年份:2018
- 资助金额:
$ 76.94万 - 项目类别:
Understanding Disparities in Preventive Services for Patients with Mental Illness
了解精神疾病患者预防服务的差异
- 批准号:
8895407 - 财政年份:2012
- 资助金额:
$ 76.94万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Creation of a knowledgebase of high quality assertions of the clinical actionability of somatic variants in cancer
创建癌症体细胞变异临床可行性的高质量断言知识库
- 批准号:
10555024 - 财政年份:2023
- 资助金额:
$ 76.94万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 76.94万 - 项目类别:
Optimizing the Generation of Monoclonal Antibodies for Prevention and Treatment of HSV Disease
优化用于预防和治疗 HSV 疾病的单克隆抗体的生成
- 批准号:
10717320 - 财政年份:2023
- 资助金额:
$ 76.94万 - 项目类别:
Implementing Scalable, PAtient-centered Team-based Care for Adults with Type 2 Diabetes and Health Disparities (iPATH)
为患有 2 型糖尿病和健康差异的成人实施可扩展、以患者为中心的团队护理 (iPATH)
- 批准号:
10660735 - 财政年份:2023
- 资助金额:
$ 76.94万 - 项目类别: