Precision Dosing for Critically Ill Children
危重儿童的精准给药
基本信息
- 批准号:10685247
- 负责人:
- 金额:$ 71.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-17 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccountingAcute Renal Failure with Renal Papillary NecrosisAdmission activityAlgorithmsAnti-Bacterial AgentsAntibioticsBacteremiaBacterial InfectionsBloodCategoriesCefazolinCharacteristicsChildChildhoodClindamycinClinicalCollectionCompensationComputer softwareComputing MethodologiesCreatinineCreatinine clearance measurementCritical IllnessCritically ill childrenData SetDifferential EquationDoseDrug DesignDrug ExposureDrug KineticsDrug ModelingsDrug MonitoringDrug PrescriptionsDrug TargetingExcretory functionFDA approvedFiberFutureGenus staphylococcusHospitalized ChildHospitalsIn VitroIndividualIndividualityInfectionKidneyKidney FailureLaboratoriesLaboratory InfectionLearningLinkMachine LearningMeasurementMeasuresMethicillinMethicillin ResistanceMethodsModelingObstetric pharmacologyOrganismOutcomePatientsPediatric Intensive Care UnitsPharmaceutical PreparationsPharmacodynamicsPlasmaPopulationPredispositionProbabilityProcessQualifyingRecording of previous eventsRegimenRenal functionSepsisSeriesSerumSoftware ToolsStaphylococcus aureusStatistical MethodsTestingTherapeuticTimeToxic effectTrainingTranslational ResearchUnited StatesVancomycinVariantVoriconazoleWeightWorkadverse drug reactionclinically relevantdrug developmentimprovedindividualized medicineinnovationinter-individual variationmathematical methodsmethicillin resistant Staphylococcus aureusnovelnovel strategiesoff-label useoutcome predictionpatient variabilitypediatric pharmacologypharmacodynamic modelpharmacokinetics and pharmacodynamicspopulation basedpredictive modelingpredictive toolsrecurrent neural networksevere injurytherapy durationtoolvirtual
项目摘要
The drug development process and FDA-approved prescribing generally assume that patients are
sufficiently stable and similar enough to justify population-based dosing for a given group that is usually
unchanged during therapy. Unfortunately, there is a huge body of evidence that dosing according to this
“one size fits all” paradigm results in wide variation in plasma drug concentrations between individuals
and even within the same individual over time, all of which can compromise clinical outcomes. Population
pharmacokinetic (PK) and pharmacodynamic (PD) models can control for this variability by providing
clinicians with tools to adjust doses accordingly, a process that has come to be known as Model-Informed
Precision Dosing (MIPD). However, MIPD has been better able to control for inter-individual variation
rather than interoccasion variation (IOV) within an individual over time. MIPD methods exist to track IOV
in the past, but not to account for possible future IOV. In this project we will address IOV in three novel
approaches. Our first aim uses our unique Virtual Pediatric Intensive Care Unit (VPICU) dataset with >400
clinical variables obtained from ~20,000 unstable, critically ill children in our hospital since 2009. We will
build recurrent neural networks (RNNs) to predict changes in renal function within individuals, which is
relevant to the control of renally excreted drugs. While models exist to predict renal failure, this will be
the first application of RNNs to predict creatinine clearance in children. There are >100,000 serum
creatinine measurements to validate this work. Our second aim is to account for changing PK-PD in
models that cannot be linked to a specific covariate like renal function. To do this, will incorporate
stochastic differential equations (SDEs) to capture changes in model parameters over time. Unique to our
work, we will apply SDEs in the setting of our long history of non-parametric PK-PD modeling, which
makes no assumptions about underlying probability distributions for parameter values in a model and is
particularly good at describing and controlling unusual patients, perfect for a critically ill population. We
will use >40,000 vancomycin doses and >5,000 plasma concentrations in VPICU to test our algorithms. Our
third aim is two-fold. First, we will again use RNNs to predict outcomes of VPICU patients with
Staphylococcal bloodstream infections treated with vancomycin. We will compare RNNs that include
vancomycin exposure estimated with IOV and without IOV. The second part is to use our in vitro hollow
fiber infection model (HFIM) to directly assess the effect of vancomycin IOV on both methicillin-resistant
and methicillin-susceptible Staphylococcus aureus in our laboratory. The HFIM can reproduce pediatric
PK to measure antibacterial kill and emergence of less susceptible or persister organisms over days to
weeks. Our inclusion of IOV in the HFIM is completely novel. We will deliver software tools to clinicians
to control IOV and understand the magnitude relevant to outcomes of anti-Staphylococcal therapy.
药物开发过程和 FDA 批准的处方通常假设患者
足够稳定和相似,足以证明针对特定群体的基于人群的剂量通常是合理的
不幸的是,有大量证据表明按照此剂量给药。
“一刀切”范式导致个体之间血浆药物浓度存在很大差异
即使在同一个人身上,随着时间的推移,所有这些都会损害临床结果。
药代动力学 (PK) 和药效学 (PD) 模型可以通过提供来控制这种变异性
相应地调整剂量的工具受到青睐,这一过程被称为“模型知情”
精密剂量 (MIPD) 然而,MIPD 能够更好地控制个体间的差异。
MIPD 方法不是跟踪个体随时间变化的 IOV 方法。
过去,但不考虑未来可能的 IOV 在这个项目中,我们将在三个小说中解决 IOV。
我们的第一个目标是使用我们独特的虚拟儿科重症监护病房 (VPICU) 数据集,其中包含超过 400 个数据。
自 2009 年以来,我们从我们医院约 20,000 名不稳定的危重儿童中获得了临床变量。我们将
建立循环神经网络(RNN)来预测个体肾功能的变化,即
与肾排泄药物的控制相关,虽然存在预测肾衰竭的模型,但这将是。
首次应用 RNN 预测儿童肌酐清除率 有 >100,000 份血清。
我们的第二个目标是解释 PK-PD 的变化。
无法与特定协变量(如肾功能)联系起来的模型将纳入其中。
随机微分方程 (SDE) 用于捕获模型参数随时间的变化,这是我们独有的。
工作中,我们将在我们悠久的非参数 PK-PD 建模历史中应用 SDE,这
不对模型中参数值的潜在概率分布做出任何假设,并且是
特别擅长描述和控制异常患者,非常适合重症患者。
将在 VPICU 中使用 >40,000 个万古霉素剂量和 >5,000 个血浆浓度来测试我们的算法。
第三个目标有两个:首先,我们将再次使用 RNN 来预测 VPICU 患者的结果。
我们将比较使用万古霉素治疗的葡萄球菌血流感染。
使用 IOV 和不使用 IOV 估算万古霉素暴露量 第二部分是使用我们的体外空心。
纤维感染模型(HFIM)直接评估万古霉素IOV对甲氧西林耐药的影响
我们实验室的 HFIM 可以繁殖对甲氧西林敏感的金黄色葡萄球菌。
PK 用于测量几天内抗菌剂的杀灭情况以及较不敏感或持久性微生物的出现情况
我们将 IOV 纳入 HFIM 是完全新颖的,我们将向叛乱分子提供软件工具。
控制 IOV 并了解与抗葡萄球菌治疗结果相关的程度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael N. Neely其他文献
Transcriptome profiles of macrophages upon infection by morphotypic smooth and rough variants of Mycobacterium abscessus.
脓肿分枝杆菌形态型光滑和粗糙变体感染后巨噬细胞的转录组谱。
- DOI:
10.1016/j.micinf.2024.105367 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:5.8
- 作者:
N. N;anwar;anwar;Joy E. Gibson;Michael N. Neely - 通讯作者:
Michael N. Neely
Modeling Pharmacokinetics in Individual Patients Using Therapeutic Drug Monitoring and Artificial Population Quasi-Models: A Study with Piperacillin
使用治疗药物监测和人工群体准模型对个体患者的药代动力学进行建模:哌拉西林的研究
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.4
- 作者:
G. Karvaly;István Vincze;Michael N. Neely;István Zátroch;Zsuzsanna Nagy;Ibolya Kocsis;Csaba Kopitkó - 通讯作者:
Csaba Kopitkó
Individual meropenem epithelial lining fluid and plasma PK/PD target attainment
个体美罗培南上皮衬里液和血浆 PK/PD 目标达到情况
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4.9
- 作者:
Roxane Rohani;Paul R Yarnold;M. Scheetz;Michael N. Neely;M. Kang;H. Donnelly;Kay Dedicatoria;Sophie H. Nozick;Rachel L. Medernach;Alan R. Hauser;E. Ozer;Estefani Diaz;A. Misharin;R. Wunderink;N. Rhodes - 通讯作者:
N. Rhodes
Genetic predisposition and high exposure to colistin in the early treatment period as independent risk factors for colistin‐induced nephrotoxicity
遗传倾向和治疗早期高粘菌素暴露是粘菌素引起肾毒性的独立危险因素
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sumith K. Mathew;A. Chapla;P. Venkatesan;Vishnu Eriyat;B. W. Aruldhas;R. Prabha;Michael N. Neely;Shoma V Rao;S. Kandasamy;B. Mathew - 通讯作者:
B. Mathew
Michael N. Neely的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael N. Neely', 18)}}的其他基金
Ontogeny of Voriconazole Pharmaockinetics and Metabolism
伏立康唑药代动力学和代谢的个体发育
- 批准号:
8754114 - 财政年份:2012
- 资助金额:
$ 71.88万 - 项目类别:
Ontogeny of Voriconazole Pharmaockinetics and Metabolism
伏立康唑药代动力学和代谢的个体发育
- 批准号:
8431779 - 财政年份:2012
- 资助金额:
$ 71.88万 - 项目类别:
Ontogeny of Voriconazole Pharmaockinetics and Metabolism
伏立康唑药代动力学和代谢的个体发育
- 批准号:
8221696 - 财政年份:2012
- 资助金额:
$ 71.88万 - 项目类别:
Ontogeny of Voriconazole Pharmaockinetics and Metabolism
伏立康唑药代动力学和代谢的个体发育
- 批准号:
8609586 - 财政年份:2012
- 资助金额:
$ 71.88万 - 项目类别:
RALTEGRAVIR PHARMACOKINETICS WITH AND WITHOUT ATAZANAVIR IN HEALTHY ADULTS
健康成人中使用和不使用阿扎那韦的拉替拉韦药代动力学
- 批准号:
7982145 - 财政年份:2008
- 资助金额:
$ 71.88万 - 项目类别:
相似海外基金
Identifying patient subgroups and processes of care that cause outcome differences following ICU vs. ward triage among patients with acute respiratory failure and sepsis
确定急性呼吸衰竭和脓毒症患者在 ICU 与病房分诊后导致结局差异的患者亚组和护理流程
- 批准号:
10734357 - 财政年份:2023
- 资助金额:
$ 71.88万 - 项目类别:
Collaborative Pediatric Critical Care Research Network - Clinical Site
儿科重症监护协作研究网络 - 临床网站
- 批准号:
10248823 - 财政年份:2021
- 资助金额:
$ 71.88万 - 项目类别:
Collaborative Pediatric Critical Care Research Network - Clinical Site
儿科重症监护协作研究网络 - 临床网站
- 批准号:
10468854 - 财政年份:2021
- 资助金额:
$ 71.88万 - 项目类别:
Collaborative Pediatric Critical Care Research Network - Clinical Site
儿科重症监护协作研究网络 - 临床网站
- 批准号:
10670273 - 财政年份:2021
- 资助金额:
$ 71.88万 - 项目类别: