Multi-omic genetic regulatory signatures underlying tissue complexity of diabetes in the pancreas at single-cell spatial resolution
单细胞空间分辨率下胰腺糖尿病组织复杂性的多组学遗传调控特征
基本信息
- 批准号:10684817
- 负责人:
- 金额:$ 65.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-17 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:Acinar CellAdultAgeAlpha CellAmericanArchitectureBeta CellBiologicalBiologyCell Differentiation processCell NucleusCellsChromatinComplexComputer AnalysisDataData AnalysesDevelopmentDiabetes MellitusDiagnosisDimensionsDiseaseDuctal Epithelial CellElementsEndocrineEnhancersEnvironmental Risk FactorEthnic PopulationGenesGeneticGenetic Predisposition to DiseaseGenetic studyGenomic approachGenomicsGenotypeGlucoseGrowthHeritabilityHeterogeneityHormone secretionHumanImageIn SituIndividualInflammationInsulinInterdisciplinary StudyIslets of LangerhansKnowledgeLocationMachine LearningMacrophageMapsMeasuresMedical Care CostsMolecularMolecular AnalysisNatural regenerationNeighborhoodsNon-Insulin-Dependent Diabetes MellitusOrganPancreasPatternPhysiologicalPhysiologyPlayPrediabetes syndromeProcessProteomicsQuantitative Trait LociRNARegulator GenesRegulatory ElementResearchResolutionResourcesRoleSignal TransductionSingle Nucleotide PolymorphismSpecificityTechnologyTextTissue imagingTissuesTranscriptional RegulationTranslatingUntranslated RNAWeightXCL1 genecell typecentralized portaldata sharingdiabetes riskepigenomicsfunctional genomicsgenetic signaturegenome wide association studyin situ imaginginsightisletmulti-ethnicmultimodalitymultiple omicspersonalized therapeuticsextooltraittranscriptometranscriptomics
项目摘要
Enter the text here that is the new abstract information for your application. This section must be no longer than 30 lines of text.
Diabetes is a complex disease that results from the cumulative temporal effects of genetic and environmental factors. A hallmark of both common and rare forms of diabetes is genetic dysregulation of insulin-producing β cells which reside in islets of Langerhans and are scattered throughout the larger context of the entire pancreas. Although genome wide association studies (GWAS) of type 2 diabetes (T2D), the most common form of diabetes, identified >600 statistically independent signals, they are difficult to translate into biological mechanisms because of their predominant noncoding location. Therefore, we propose to map the context specificity of T2D and related trait GWAS signals in pancreas across multiple dimensions: cell type, age, sex, developmental stage, and genetic background. Our proposal is based on our exciting single-cell multi-omic spatially-resolved pilot data and the well-supported idea that noncoding GWAS signals percolate upwards through complex and hierarchical molecular networks that influence cellular circuits. The initial layer in this hierarchy is chromatin organization, which propagates genetic predisposition onto subsequent molecular layers, likely starting with the transcriptome. Because islet physiology is influenced by the identity and spatial arrangement of surrounding cells within the pancreas, our multimodal molecular analyses will focus on four major pancreatic lineages; endocrine α and β cells, acinar, and ductal cells. In addition, we will incorporate the analysis of tissue resident macrophages because they play an important role in several processes including islet/pancreatic cell differentiation, growth, regeneration, and inflammation. The proposed studies will establish associations between regulatory elements, genes, cell types, tissue organization, and physiological function. Our multidisciplinary research team with complementary expertise in pancreas and islet biology, sequencing technologies, single cell genomics and epigenomics, image data analysis, and machine learning devised a suite of tools and analyses to discover cell state dynamic changes across diverse conditions, and how these changes influence downstream biology from transcriptional regulation, to cellular spatial organization within the pancreas, and finally to tissue-level physiology. This approach, if successful, will enable mechanistic insights across GWAS loci, which can inform new personalized therapeutic strategies.
在此输入您的申请的新摘要信息的文本。此部分的文本长度不得超过 30 行。
糖尿病是一种复杂的疾病,是由遗传和环境因素的累积时间效应引起的,常见和罕见糖尿病的一个特点是产生胰岛素的 β 细胞的遗传失调,这些细胞存在于胰岛中并分散在更大的范围内。尽管 2 型糖尿病 (T2D)(最常见的糖尿病形式)的全基因组关联研究 (GWAS) 发现了超过 600 个统计上独立的信号,但由于它们占主导地位的非编码,因此很难转化为生物学机制。因此,我们建议在多个维度上绘制胰腺中 T2D 和相关性状 GWAS 信号的背景特异性:细胞类型、年龄、性别、发育阶段和遗传背景。组学空间解析的先导数据和得到充分支持的观点,即非编码 GWAS 信号通过影响细胞回路的复杂且分层的分子网络向上渗透,该层次结构中的初始层是染色质组织,它传播遗传。由于胰岛生理学受到胰腺内周围细胞的特性和空间排列的影响,因此我们的多模式分子分析将重点关注四种主要的胰腺α和β细胞谱系;此外,我们还将对组织驻留巨噬细胞进行分析,因为它们在胰岛/胰腺细胞分化、生长、再生和炎症等多个过程中发挥着重要作用。我们的多学科研究团队在胰腺和胰岛生物学、测序技术、单细胞基因组学和表观基因组学、图像数据分析和机器学习方面具有互补的专业知识,设计了一套工具和分析来发现不同条件下细胞状态的动态变化,以及这些变化如何影响下游生物学,从转录调控到胰腺内的细胞空间组织,最后到组织水平的生理学。如果成功,这种方法将能够获得机械见解。穿过GWAS 位点,可以为新的个性化治疗策略提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcela Brissova其他文献
Marcela Brissova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcela Brissova', 18)}}的其他基金
Integrative analysis of multi-omic signatures and cellular function in human pancreas across developmental timeline at single-cell spatial resolution
以单细胞空间分辨率对人类胰腺跨发育时间线的多组学特征和细胞功能进行综合分析
- 批准号:
10776295 - 财政年份:2023
- 资助金额:
$ 65.22万 - 项目类别:
Integrative analysis of multi-omic signatures and cellular function in human pancreas across developmental timeline at single-cell spatial resolution
以单细胞空间分辨率对人类胰腺跨发育时间线的多组学特征和细胞功能进行综合分析
- 批准号:
10705781 - 财政年份:2022
- 资助金额:
$ 65.22万 - 项目类别:
In situ analysis of functional endocrine, vascular, and immune cell interactions during early postnatal development of the human pancreas
人类胰腺出生后早期发育过程中功能性内分泌、血管和免疫细胞相互作用的原位分析
- 批准号:
10251144 - 财政年份:2018
- 资助金额:
$ 65.22万 - 项目类别:
In situ analysis of functional endocrine, vascular, and immune cell interactions during early postnatal development of the human pancreas
人类胰腺出生后早期发育过程中功能性内分泌、血管和免疫细胞相互作用的原位分析
- 批准号:
9789864 - 财政年份:2018
- 资助金额:
$ 65.22万 - 项目类别:
相似国自然基金
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding how exocrine-derived signals promote beta cell growth
了解外分泌信号如何促进 β 细胞生长
- 批准号:
10750765 - 财政年份:2024
- 资助金额:
$ 65.22万 - 项目类别:
Early Pathogenesis of Cystic Fibrosis Related Diabetes
囊性纤维化相关糖尿病的早期发病机制
- 批准号:
10397094 - 财政年份:2021
- 资助金额:
$ 65.22万 - 项目类别:
Early Pathogenesis of Cystic Fibrosis Related Diabetes
囊性纤维化相关糖尿病的早期发病机制
- 批准号:
10599931 - 财政年份:2021
- 资助金额:
$ 65.22万 - 项目类别:
Manipulating Stem Cells to Provide Long Term Regeneration of Irradiated Salivary Glands
操纵干细胞以提供受辐射唾液腺的长期再生
- 批准号:
10434885 - 财政年份:2018
- 资助金额:
$ 65.22万 - 项目类别:
Manipulating Stem Cells to Provide Long Term Regeneration of Irradiated Salivary Glands
操纵干细胞以提供受辐射唾液腺的长期再生
- 批准号:
10180935 - 财政年份:2018
- 资助金额:
$ 65.22万 - 项目类别: