Development and Validation of an Artificial Intelligence-Based Clinical Decision Support Tool for Videofluoroscopic Swallowing Studies
用于视频透视吞咽研究的基于人工智能的临床决策支持工具的开发和验证
基本信息
- 批准号:10679097
- 负责人:
- 金额:$ 22.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-08 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAffectAge YearsAlgorithmsAnatomyArtificial IntelligenceBariumBiomechanicsBolus InfusionClassificationClinicClinicalComputer softwareConsumptionDataData SetDeglutitionDeglutition DisordersDehydrationDevelopmentDiagnosisDiagnostic ProcedureElderlyEnvironmentEtiologyFunctional disorderFutureGoalsHead and Neck CancerHead and neck structureHealthHealth care facilityHumanImageImpairmentInpatientsLeftLength of StayLungMalnutritionManualsMasksMeasuresMedicalMethodsMorphologic artifactsNatureNetwork-basedNeurodegenerative DisordersOral cavityOutcomeOutputPatient imagingPatientsPharyngeal structurePhysiologyPneumoniaPrevalenceProceduresQuality of lifeReference ValuesResearchResourcesRetrospective cohortSpeedStrokeStructureTechniquesTimeUnited StatesValidationVisualizationWorkacute careartificial intelligence methodartificial neural networkaspirateautomated segmentationcatalystclinical decision supportclinical decision-makingclinical practiceclinically relevantcontrast enhancedconvolutional neural networkcostdesignexperiencehospital readmissionimage processingimprovedinterestmortalitynovelradiological imagingsegmentation algorithmsupport toolstool
项目摘要
ABSTRACT
Dysphagia (swallowing dysfunction) is highly prevalent in a variety of medical conditions and prevalence
increases with advancing age. If incorrectly diagnosed or left untreated, dysphagia can lead to serious health
consequences, including malnutrition, dehydration, and pneumonia. The most commonly used procedure to
diagnose dysphagia is the videofluoroscopic swallow (VFS) study. A VFS study utilizes barium to provide a
contrast enhanced fluoroscopic procedure that allows for visualization of anatomy and physiology relevant to
swallowing as well as identification of swallowing biomechanical impairments. Current VFS analysis methods
used clinically are primarily qualitative in nature and subject to issues with reliability. Quantitative methods to
support VFS clinical interpretation do exist but are primarily found in the research environment due to the time-
consuming nature of frame by frame analysis required. The overall objective of this application is to develop
and validate an artificial neural network-based software that will segment and track clinically important
swallowing structures on a frame-by-frame basis within swallowing videos. Segmentation and tracking will
automatically occur post acquisition with no needed input or video editing. Frame by frame auto-segmentation
of regions of interest will allow for quantitative metrics to be determined algorithmically. To accomplish this
objective, two specific aims are proposed: 1) to develop and validate an AI based auto-segmentation algorithm
that accurately segments swallowing anatomy and bolus flow in VFS studies from a retrospective cohort of
stroke and mixed etiology patients and 2) to apply the auto-segmentation algorithm to derive a variety of
clinically relevant metrics in VFS studies and compare to manually derived reference values. To accomplish
the first aim, pre-processing techniques will be established to improve image quality and reduce image artifacts
using a novel 3D printed anthropomorphic head & neck phantom. Using a robust existing dataset of VFS
images, we will then develop a Mask R-Convolutional Neural Network for automatic segmentation of a variety
of clinically relevant features on VFS studies and will validate the auto-segmentation against manually derived
segmentation. For the second aim, the auto-segmentation algorithm will be applied to derive important
swallowing measures and associated metrics from the VFS images. The output of the algorithm will be
validated against measures and metrics manually derived from the VFS images by experienced raters with
established reliability. Tools developed through this project will reduce the subjectivity of human interpretation
of VFS images, which will improve consistency and reliability of dysphagia diagnosis and treatment.
抽象的
吞咽困难(吞咽功能障碍)在各种医疗状况下都很常见,而且患病率很高
随着年龄的增长而增加。如果诊断不正确或不及时治疗,吞咽困难可能会导致严重的健康问题
后果,包括营养不良、脱水和肺炎。最常用的程序是
诊断吞咽困难的方法是电视透视吞咽 (VFS) 研究。 VFS 研究利用钡来提供
对比增强荧光镜检查程序,可实现与相关解剖学和生理学的可视化
吞咽以及吞咽生物力学损伤的识别。当前的VFS分析方法
临床上使用的主要是定性的,并且存在可靠性问题。定量方法
支持 VFS 临床解释确实存在,但由于时间原因主要在研究环境中发现
需要逐帧分析的消耗性质。该应用程序的总体目标是开发
并验证基于人工神经网络的软件,该软件将分割和跟踪临床上重要的内容
吞咽视频中逐帧吞咽结构。细分和跟踪将
采集后自动发生,无需输入或视频编辑。逐帧自动分割
感兴趣区域的数量将允许通过算法确定定量指标。为了实现这一点
为了实现这一目标,提出了两个具体目标:1)开发并验证基于人工智能的自动分割算法
在 VFS 研究中从回顾性队列中准确分割吞咽解剖结构和推注流量
中风和混合病因患者,2) 应用自动分割算法得出各种
VFS 研究中的临床相关指标,并与手动得出的参考值进行比较。为了完成
第一个目标是建立预处理技术来提高图像质量并减少图像伪影
使用新颖的 3D 打印拟人头颈模型。使用强大的现有 VFS 数据集
图像,然后我们将开发一个 Mask R 卷积神经网络,用于自动分割各种图像
VFS 研究的临床相关特征,并将根据手动得出的结果验证自动分割
分割。对于第二个目标,将应用自动分割算法来导出重要的
来自 VFS 图像的吞咽测量和相关指标。算法的输出将是
由经验丰富的评估者根据从 VFS 图像手动得出的度量和指标进行验证
建立的可靠性。通过该项目开发的工具将减少人类解释的主观性
VFS 图像,这将提高吞咽困难诊断和治疗的一致性和可靠性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bryan Patrick Bednarz其他文献
Bryan Patrick Bednarz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bryan Patrick Bednarz', 18)}}的其他基金
Development and Validation of an Artificial Intelligence-Based Clinical Decision Support Tool for Videofluoroscopic Swallowing Studies
用于视频透视吞咽研究的基于人工智能的临床决策支持工具的开发和验证
- 批准号:
10511906 - 财政年份:2022
- 资助金额:
$ 22.66万 - 项目类别:
Real-time Tumor Localization and Guidance for Radiotherapy Using US and MRI
使用超声和 MRI 进行实时肿瘤定位和放射治疗指导
- 批准号:
9321769 - 财政年份:2015
- 资助金额:
$ 22.66万 - 项目类别:
A cancer-targeted phospholipid ether analog for molecular radiotherapy of pediatric solid tumors
用于儿童实体瘤分子放射治疗的癌症靶向磷脂醚类似物
- 批准号:
9064105 - 财政年份:2015
- 资助金额:
$ 22.66万 - 项目类别:
相似国自然基金
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
运动状态下代谢率的年龄变化特征及对人体热舒适的影响研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于堆叠式集成学习探索人居环境对生物学年龄的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Stopping Hydroxychloroquine In Elderly Lupus Disease (SHIELD)
停止使用羟氯喹治疗老年狼疮病 (SHIELD)
- 批准号:
10594743 - 财政年份:2023
- 资助金额:
$ 22.66万 - 项目类别:
Regulation of Vascular Calcification by Adventitial Endothelial Cells
外膜内皮细胞对血管钙化的调节
- 批准号:
10642619 - 财政年份:2023
- 资助金额:
$ 22.66万 - 项目类别:
Project 2: Therapeutic Gene Editing for Friedreich's Ataxia
项目 2:弗里德赖希共济失调的治疗性基因编辑
- 批准号:
10668768 - 财政年份:2023
- 资助金额:
$ 22.66万 - 项目类别:
Development of CM-CS1 CAR Treg to Treat Amyotrophic Lateral Sclerosis (ALS)
开发 CM-CS1 CAR Treg 治疗肌萎缩侧索硬化症 (ALS)
- 批准号:
10696512 - 财政年份:2023
- 资助金额:
$ 22.66万 - 项目类别:
Identifying and understanding the role of repeat RNAs and RAN proteins in Alzheimer's disease
识别和理解重复 RNA 和 RAN 蛋白在阿尔茨海默病中的作用
- 批准号:
10833734 - 财政年份:2023
- 资助金额:
$ 22.66万 - 项目类别: