Interpreting Bone Morphogenetic Protein Gradients in Vertebrate Development
解释脊椎动物发育中的骨形态发生蛋白梯度
基本信息
- 批准号:10677094
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-23 至 2025-09-22
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimalsAuxinsBindingBloodBone Morphogenetic ProteinsCell Fate ControlCell TransplantationCellsCharacteristicsCommunicationComplexConfocal MicroscopyCritical PathwaysDefectDevelopmentDiseaseDoseElementsEmbryoEnvironmentExposure toEye AbnormalitiesFishesFluorescent ProbesGastrointestinal DiseasesGene ActivationGene ExpressionGene Expression ProfilingGenesGeneticGenetic TranscriptionGerm CellsGerm LayersGoalsHeart AbnormalitiesHeat-Shock ResponseHumanHuman DevelopmentImmune System DiseasesImmune systemIn Situ HybridizationKidneyKnowledgeLeadLengthLightLinkLocationMalignant NeoplasmsMesodermMesoderm CellMethodsMicroscopyModelingModificationMolecularOutcomeOutputParaxial MesodermPathway interactionsPatternPositioning AttributePronephric structureProteinsRegenerative MedicineReporterResearchResolutionRoleSignal InductionSignal PathwaySignal TransductionSignaling ProteinSjogren&aposs SyndromeSomitesSpecific qualifier valueSyndromeSystemSystems DevelopmentTechniquesTemporal bone structureTestingTimeTissuesTransgenic OrganismsTranslatingTransplantationUndifferentiatedVentVertebratesWorkZebrafishbody systemcell behaviorcell motilitycell typecombatgastrulationhuman diseasein vivoinsightintercellular communicationmigrationmorphogensmosaicmosaic analysisnotochordnovelorgan growthoverexpressionprogenitorshort bonestem cellssynergismtranscription factortransgene expressionzebrafish development
项目摘要
Project Summary/Abstract
Animal development consists of complex cell coordination and rearrangement via intercellular communications.
It is not well understood how progenitor cells interpret neighbor cell signals that impact cell fate decisions. One
critical signaling element in animal development is morphogen signaling. Bone morphogenetic protein (BMP)
acts as a morphogen to pattern the dorsoventral (DV) axis during vertebrate development, where BMP
concentration gradients correlate with different cell identities. To study the mechanism in which progenitors
interpret BMP gradients, I look to zebrafish development. Zebrafish are transparent during embryonic and
larval stages, facilitating high resolution microscopy of cell fate change and migration patterns. Zebrafish share
more than 70% of their genes with humans, making them excellent models for human development and
disease research. Using zebrafish embryos, I will manipulate BMP concentration, progenitor cell location, and
BMP signal duration within mesodermal progenitors and determine the morphogenetic outcome. In Aim 1 of
this project, I will investigate the mechanism in which BMP signal coordinates its migration and cell fate gene
expression that results in its characteristic morphogenetic output. With DV BMP morphogenetic signaling, cells
may be positioned in embryonic domains where the microenvironment affects a binary fate switch. To answer
my question, I will be using transgenic embryos to conditionally overexpress ectopic BMP signal. Transplanting
transgenic cells into wildtype (WT) embryos prior to gastrulation stages will allow for the analysis of transgenic
cell fate decisions within the WT environment. I will analyze time lapses of developing embryos containing
these transgenic cells using spinning disk confocal microscopy. Cell fates will be genetically assessed using in
situ hybridization and fate-specific fluorescent probes before, during and after gastrulation. In Aim 2, I will be
determining the role that BMP signal duration has on cell fate decisions. I will be utilizing the Auxin Inducible
Degron (AID) system to create specific durations of BMP signaling and BMP target gene expression in order to
determine how signal duration impacts fate. Because a direct BMP target protein inhibits the transcription of
cell fate specific transcription factors, I hypothesize that the duration of BMP signaling would change the
amount of time that this target gene is present, allowing cell fate genes to bind when they normally would not
be able to, thus altering cell fates. The combined use of cell autonomous reporter fish lines, transplantation,
gene expression analysis, transgenic fish utilizing the AID system, and spinning disk confocal microscopy will
allow me to test my hypotheses.
项目概要/摘要
动物发育包括通过细胞间通讯进行的复杂细胞协调和重排。
目前尚不清楚祖细胞如何解释影响细胞命运决定的邻近细胞信号。一
动物发育中的关键信号元件是形态发生素信号传导。骨形态发生蛋白(BMP)
在脊椎动物发育过程中,BMP 作为形态发生素来形成背腹 (DV) 轴,其中 BMP
浓度梯度与不同的细胞特性相关。研究祖细胞的作用机制
解释 BMP 梯度时,我关注斑马鱼的发育。斑马鱼在胚胎和胚胎时期都是透明的
幼虫阶段,促进细胞命运变化和迁移模式的高分辨率显微镜观察。斑马鱼分享
它们70%以上的基因与人类相同,使它们成为人类发展的优秀模型
疾病研究。使用斑马鱼胚胎,我将操纵 BMP 浓度、祖细胞位置,以及
中胚层祖细胞内的 BMP 信号持续时间并确定形态发生结果。目标 1
在这个项目中,我将研究BMP信号协调其迁移和细胞命运基因的机制
导致其特征形态发生输出的表达。通过 DV BMP 形态发生信号传导,细胞
可能位于微环境影响二元命运转换的胚胎区域。来回答
我的问题是,我将使用转基因胚胎来有条件地过度表达异位 BMP 信号。移植
在原肠胚阶段之前将转基因细胞植入野生型(WT)胚胎中将允许分析转基因
WT 环境中的细胞命运决定。我将分析发育中的胚胎的时间流逝,其中包含
这些转基因细胞使用转盘共聚焦显微镜。细胞命运将通过基因评估
原肠胚形成之前、期间和之后的原位杂交和命运特异性荧光探针。在目标 2 中,我将
确定 BMP 信号持续时间对细胞命运决定的作用。我将使用生长素诱导剂
Degron (AID) 系统创建特定持续时间的 BMP 信号传导和 BMP 靶基因表达,以便
确定信号持续时间如何影响命运。因为直接 BMP 靶蛋白抑制 BMP 的转录
细胞命运特异性转录因子,我假设 BMP 信号传导的持续时间会改变
该目标基因存在的时间量,允许细胞命运基因在通常不会结合的情况下结合
能够,从而改变细胞的命运。细胞自主报告鱼系的联合使用、移植、
基因表达分析、利用 AID 系统的转基因鱼和转盘共聚焦显微镜将
请允许我检验我的假设。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Courtney Tello其他文献
Courtney Tello的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
Fosl2调控染色质开放性在哺乳动物卵丘-卵母细胞复合物成熟过程中的机制研究
- 批准号:82301863
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
H5亚型禽流感病毒PA蛋白诱导降解JAK1增强病毒对哺乳动物致病性的作用及机制研究
- 批准号:32373042
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
动物双歧杆菌对不同聚合度低聚木糖同化差异性的分子机制研究
- 批准号:32302789
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
- 批准号:32330014
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
相似海外基金
Investigating how bHLH circuits integrate signals for cell fate decisions
研究 bHLH 电路如何整合信号以决定细胞命运
- 批准号:
10722452 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
The Role of mRNA Degradation in Embryonic Cell Fate Specification
mRNA 降解在胚胎细胞命运规范中的作用
- 批准号:
10604512 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Role of C. elegans RAPGEF in Synapse Development at the Neuromuscular Junction
线虫 RAPGEF 在神经肌肉接头突触发育中的作用
- 批准号:
10676616 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Function of Kdm4dl-mediated heterochromatin removal in the preimplantation mouse embryo
Kdm4dl 介导的植入前小鼠胚胎异染色质去除的功能
- 批准号:
10540694 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别: