Inducing H3F3A exon skipping with antisense oligonucleotides as an approach to treat diffuse intrinsic pontine glioma
用反义寡核苷酸诱导 H3F3A 外显子跳跃作为治疗弥漫性内源性脑桥胶质瘤的方法
基本信息
- 批准号:10677284
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AntibodiesAntisense Oligonucleotide TherapyAntisense OligonucleotidesBase PairingBindingBiological AssayBrain NeoplasmsBrain StemCell Differentiation processCellsCentral Nervous SystemChemistryChildChildhood Brain NeoplasmChildhood GliomaClinical Drug DevelopmentCodeCodon NucleotidesCompensationComplexDataDifferentiation AntigensDiffuse intrinsic pontine gliomaDiseaseElectrophoretic Mobility Shift AssayExcisionExhibitsExonsFDA approvedGenetic DiseasesGlial Fibrillary Acidic ProteinGliomaGoalsH3 K27M mutationHeterozygoteHistone H3Histone H3.3HistonesHumanImmunofluorescence ImmunologicInitiator CodonInjectionsKineticsKnowledgeLeadLocal TherapyLocationLysineManuscriptsMediatingMessenger RNAMethionineMethodsMethylationMitochondriaModalityMolecular TargetMutateMutationNatureNeoplasmsNeurogliaNeuronal DifferentiationNeuronsOncologyOperative Surgical ProceduresPathologicPatientsPediatric NeoplasmPoint MutationPolycombProliferatingProteinsProtocols documentationRNARNA SplicingRNA-Binding ProteinsRadiation therapyResearchReverse Transcriptase Polymerase Chain ReactionRoleSiteSite-Directed MutagenesisSpecificitySurvival RateTherapeuticToxic effectTranslationsTumor BurdenTumor VolumeTumor-DerivedVisualizationWestern BlottingXenograft procedurechemotherapyclinical candidatecurative treatmentsdesigndrug developmenteffective therapyexon skippinggain of function mutationin vivomouse modelmutantneoplastic cellneuralnovel therapeuticsoverexpressionparalogous genepre-clinicalpreventprotein H(3)protein expressionrestorationside effecttumortumor diagnosistumor growthtumorigenesis
项目摘要
PROJECT SUMMARY
Pediatric high grade gliomas (pHGGs) represent 10-15% of all brain tumors diagnosed in children. One subtype
of pHGGs, diffuse intrinsic pontine glioma (DIPG), is especially deadly, with a five-year survival rate of < 1%.
Current treatment options are non-curative; surgical resection, localized radiation, and chemotherapy are com-
plicated by the brainstem location of the tumor and accompanying negative side-effects. Thus, more effective
strategies are urgently needed. Approximately 70-80% of all DIPG tumors are marked by a dominant heterozy-
gous point mutation in H3F3A, which codes for the non-canonical histone H3.3. This toxic gain-of-function mu-
tation replaces lysine 27 with methionine (K27M), preventing trimethylation of lysine 27 (H3K27me3). H3K27M
has also been shown to interfere with Polycomb repressive complex 2 (PRC2), leading to global reduction of di-
and tri-methylation on histone proteins. This mutant H3.3 histone is predicted to be a major driver of tumorigen-
esis in H3K27M-mutated DIPG by disrupting normal neural differentiation. Antisense oligonucleotides (ASOs)
offer a unique method to target mRNA through Watson-Crick base pairing with high specificity and low toxicity.
In a recently submitted manuscript, my lab developed a “gapmer” ASO which targets H3F3A for RNaseH deg-
radation, inducing neural differentiation and prolonging survival. To further these results by pursuing a parallel
ASO modality, I will develop a splice-switching ASO that reduces translation of mutant H3K27M RNA by inducing
skipping of H3F3A exon 2, which contains the only in-frame start codon for H3F3A and the K27M mutation. This
splice-switching modality is significant because uniformly-modified ASOs, unlike “gapmer” ASOs, exhibit longer
half-lives and reduced off-target liability in the central nervous system, and ASOs of this chemistry are already
FDA-approved treatments. Furthermore, H3F3A and its paralogous gene H3F3B both encode identical H3.3
histone proteins, H3F3B is sufficient to compensate for loss of H3F3A, and H3F3B should remain unaffected by
my ASO strategy due to sequence dissimilarities. I hypothesize that the reduction of H3K27M will limit DIPG
tumor growth and prolong survival by promoting differentiation of the tumor cells. The aims of my pro-
posal are to identify a lead splice-switching ASO that reduces H3K27M and restores H3K27me3 and to charac-
terize the role of the RNA-binding protein RBFOX3 in reinforcing neural differentiation and H3F3A exon 2 skip-
ping following ASO injection. Methods to achieve will include establishing a preclinical in vivo mouse model with
H3.3K27M DIPG xenografts to study splicing changes of H3F3A and H3F3B through RT-PCR, protein expres-
sion of H3K27M and H3K27me3 through immunoblot, and neural cell differentiation through immunofluores-
cence following ASO injection. Additionally, splicing and analytical RNA-protein binding assays will be used to
characterize the role and binding kinetics of RBFOX3 with H3F3A RNA. The proposed research is significant
because it will: (i) help identify and provide mechanistic explanation for a new clinical candidate for drug devel-
opment; and (ii) provide further justification for use of ASOs in the treatment of neuro-oncological disorders.
项目概要
儿童高级别胶质瘤 (pHGG) 占儿童诊断的所有脑肿瘤的 10-15%。
pHGG 的弥漫性内质性脑桥胶质瘤 (DIPG) 尤其致命,五年生存率 < 1%。
目前的治疗选择是非治愈性的;手术切除、局部放疗和化疗都是有效的。
通过肿瘤的脑干位置复制并伴随负面副作用,因此更有效。
大约 70-80% 的 DIPG 肿瘤以显性杂合为标志。
H3F3A 中的 gous 点突变,编码非典型组蛋白 H3.3,这种有毒的功能获得性 mu-。
用蛋氨酸 (K27M) 替换赖氨酸 27,防止赖氨酸 27 (H3K27me3) 发生三甲基化。
也已被证明可以干扰 Polycomb 抑制复合物 2 (PRC2),从而导致全球性减少
组蛋白上的三甲基化预计是肿瘤发生的主要驱动因素。
通过破坏正常的神经分化(ASO)来抑制 H3K27M 突变的 DIPG 的发生。
提供了一种通过 Watson-Crick 碱基配对靶向 mRNA 的独特方法,具有高特异性和低毒性。
在最近提交的手稿中,我的实验室开发了一种“gapmer”ASO,它针对 RNaseH 脱氢酶 H3F3A
辐射,诱导神经分化并延长生存期。
ASO 模式,我将开发一种剪接转换 ASO,通过诱导减少突变 H3K27M RNA 的翻译
跳过 H3F3A 外显子 2,其中包含 H3F3A 的唯一框内起始密码子和 K27M 突变。
剪接转换模式非常重要,因为与“gapmer”ASO 不同,一致修饰的 ASO 表现出更长的
半衰期和减少中枢神经系统的脱靶倾向,并且这种化学的 ASO 已经
此外,H3F3A 及其旁系同源基因 H3F3B 均编码相同的 H3.3。
组蛋白,H3F3B 足以补偿 H3F3A 的损失,并且 H3F3B 应保持不受
由于序列差异,我的 ASO 策略我认为 H3K27M 的减少将限制 DIPG。
通过促进肿瘤细胞的分化来促进肿瘤生长并延长生存期。
posal 的目标是确定一个可减少 H3K27M 并恢复 H3K27me3 的先导剪接转换 ASO 以及特征
确定 RNA 结合蛋白 RBFOX3 在增强神经分化和 H3F3A 外显子 2 跳跃中的作用
ASO 注射后的 ping 实现方法包括建立临床前体内小鼠模型。
H3.3K27M DIPG异种移植物通过RT-PCR研究H3F3A和H3F3B的剪接变化,蛋白表达
通过免疫印迹区分 H3K27M 和 H3K27me3,并通过免疫荧光区分神经细胞
此外,将使用剪接和分析 RNA-蛋白质结合测定。
表征 RBFOX3 与 H3F3A RNA 的作用和结合动力学 本研究具有重要意义。
因为它将:(i)帮助识别新的临床候选药物并为其提供机制解释
(ii) 为使用 ASO 治疗神经肿瘤疾病提供进一步的理由。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lucia Yang其他文献
Lucia Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
1型Bartter综合征致病基因SLC12A1变异c.1435C>G发病机制暨个体化反义寡核苷酸治疗初步研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
U-snRNA和反义寡核苷酸靶向治疗SCN1A基因异常剪接所致癫痫的应用基础研究
- 批准号:82071548
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
吗啉反义寡核苷酸治疗α1-抗胰蛋白酶pittsburg突变的策略研究
- 批准号:81700132
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
新型运输辅助剂在杜兴肌肉萎缩症治疗中的基础研究
- 批准号:81472052
- 批准年份:2014
- 资助金额:61.0 万元
- 项目类别:面上项目
鉴定dystrophin基因外显子中的剪接调控序列及其在治疗Duchenne型肌营养不良症中的应用研究
- 批准号:81371921
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
A Novel RNA Therapeutics Platform to Treat Facioscapulohumeral Muscular Dystrophy and other Neuromuscular Disorders
治疗面肩肱型肌营养不良症和其他神经肌肉疾病的新型 RNA 治疗平台
- 批准号:
10155849 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
An antisense oligonucleotide therapy for KCNT1 based epileptic encephalopathies
基于 KCNT1 的癫痫性脑病的反义寡核苷酸疗法
- 批准号:
10266821 - 财政年份:2020
- 资助金额:
$ 4万 - 项目类别:
Alteration of tau splicing to identify and treat tauopathies
改变 tau 剪接以识别和治疗 tau 病
- 批准号:
8912294 - 财政年份:2014
- 资助金额:
$ 4万 - 项目类别: