MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛查系统的数据
基本信息
- 批准号:10674729
- 负责人:
- 金额:$ 85.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:Adenosine A1 ReceptorAgonistAgrochemicalsAlgorithmsAndrogen ReceptorAnimal ModelAromataseAwardBayesian MethodBayesian ModelingBehaviorBiotechnologyChemicalsChemistryClientCollaborationsCollectionComputer ModelsComputer softwareDNADataData SetDatabasesDecision TreesEndocrine disruptionEstrogen ReceptorsFee-for-Service PlansFingerprintFoundationsFutureGenerationsGrantGraphIn VitroIndustryLaboratoriesLearningLettersLibrariesLicensingMachine LearningMarketingMeasuresMedicalMethodsModelingMolecularMorphologyPaperPathway interactionsPharmacologic SubstancePhaseProgress ReportsPropertyProteinsPublic DomainsPublishingReceiver Operating CharacteristicsSourceStructureSystemTestingToxic effectToxicologyTrainingValidationVisualizationWorkZebrafishadverse outcomecheminformaticsclassification algorithmcommercializationcomputational toxicologyconsumer productcostdashboarddata modelingdata visualizationdevelopmental toxicitydiverse datadrug discoverydrug induced liver injuryin vitro Assayin vitro testingin vivoin vivo Modelin vivo evaluationknowledge graphlarge datasetsmachine learning algorithmmachine learning modelmodel buildingmodel developmentmortalitymultitaskneurotoxicitynovelpostersprospectiveprototypepublic databaserandom forestregression algorithmscreeningtoolweb appweb site
项目摘要
Project Summary
Computational toxicology aims to use rules, models and algorithms based on prior data for specific endpoints,
to enable the prediction of whether a new molecule will possess similar liabilities or not. In some cases, the
computational models are derived from discrete molecular endpoints (e.g. estrogen receptor agonism) while in
others they are quite broad in scope (e.g. drug induced liver injury, DILI). Considerable progress has been made
in computational toxicology in a decade both in model development and availability such that the latest
generation of larger scale machine learning (ML) models will further focus in vitro and in vivo testing on
verification of select predictions. Pharmaceutical, consumer products, agrochemical and other chemistry focused
companies possess structure-activity data generated over many decades of screening that is not in the public
domain, and this data is primarily only accessible to the cheminformatics experts in each company. Outside of
these companies small pharmaceutical, biotech companies and academics must rely on data from public
databases, commercial databases and their own data. Integrating such data from diverse sources and
processing with algorithms to build machine learning (ML) models that can help to enable predictions for new
compounds is a vast undertaking. Over Phase I of this project to develop the prototype for MegaToxÒ, we curated
toxicity datasets then generated and tested well over 200 ML models initially focused on the Bayesian approach.
We have also developed approaches to understand training and test set applicability and ultimately performed
prospective predictions against several toxicity targets. Having completed these aims, we also collaborated with
numerous academic laboratories and performed fee-for-service work with five commercial companies. We
currently have several pharmaceutical, agrochemical and consumer product companies evaluating our
computational toxicity models prior to licensing. These discussions with potential customers have influenced this
Phase II proposal to include the following aims: 1. Compare and integrate novel graph-based models such as
graphSAGE versus our suite of 15 different ML regression and classification algorithms for modeling toxicology
datasets such as those generated in Phase I. 2. Integrate read across and adverse outcome pathway methods
with our computational models for DILI and other toxicity models as needed. 3. Generate validated ML models
from in vivo data for non-mammalian species (initially using Zebrafish) which will enable in vitro and in vivo
correlations and can be validated relatively cost effectively. In this proposal over 2 years we expect to develop
models with 15 different algorithms for at least 100 in vitro and in vivo datasets, leading to > 1500 toxicity ML
models. We are not aware of any other company pursuing such an approach to both generate new high value
datasets or models, performing testing of their own models and creating a wide array of toxicity ML models.
MegaToxÒ will be a product available for licensing by pharmaceutical, consumer product, agrochemical and
regulatory groups as well as used in fee-for-service consulting.
项目概要
计算毒理学旨在使用基于特定终点先前数据的规则、模型和算法,
在某些情况下,可以预测新分子是否具有类似的特性。
计算模型源自离散的分子终点(例如雌激素受体激动作用)
其他方面的范围相当广泛(例如药物引起的肝损伤,DILI)。
十年来在计算毒理学方面无论是在模型开发还是可用性方面都取得了进展,例如最新的
更大规模机器学习(ML)模型的生成将进一步侧重于体外和体内测试
验证选定的预测,重点关注制药、消费品、农用化学品和其他化学领域。
公司拥有经过数十年筛选产生的不公开的结构活性数据
域,并且这些数据主要只能由每个公司外部的化学信息学专家访问。
这些公司(小型制药公司、生物技术公司和学术机构)必须依赖公共数据
数据库、商业数据库和他们自己的数据。
使用算法进行处理以构建机器学习 (ML) 模型,帮助实现新的预测
我们策划了该项目第一阶段的 MegaToxÒ 原型开发工作,这是一项艰巨的任务。
然后,毒性数据集生成并测试了 200 多个最初专注于贝叶斯方法的 ML 模型。
我们还开发了理解训练和测试集适用性并最终执行的方法
在完成这些目标后,我们还与多个毒性目标进行了前瞻性预测。
众多学术实验室并与五家商业公司进行有偿服务工作。
目前有多家制药、农化和消费品公司正在评估我们的
许可之前的计算毒性模型影响了这一点。
第二阶段提案包括以下目标: 1. 比较和集成新颖的基于图的模型,例如
graphSAGE 与我们用于毒理学建模的 15 种不同 ML 回归和分类算法套件的比较
数据集,例如第一阶段生成的数据集。 2. 整合跨读和不良结果途径方法
根据需要使用我们的 DILI 计算模型和其他毒性模型 3. 生成经过验证的 ML 模型。
来自非哺乳动物物种(最初使用斑马鱼)的体内数据,这将使体外和体内
相关性,并且可以相对成本有效地进行验证,在该提案中,我们预计将在两年内进行开发。
具有 15 种不同算法的模型,适用于至少 100 个体外和体内数据集,导致 > 1500 个毒性 ML
我们不知道有任何其他公司采用这种方法来创造新的高价值。
数据集或模型,对自己的模型进行测试并创建各种毒性 ML 模型。
MegaToxÒ 将成为可供制药、消费品、农用化学品和
监管团体以及用于按服务收费的咨询。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SEAN EKINS其他文献
SEAN EKINS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SEAN EKINS', 18)}}的其他基金
Preclinical development of a Nipah Virus inhibitor
尼帕病毒抑制剂的临床前开发
- 批准号:
10761349 - 财政年份:2023
- 资助金额:
$ 85.5万 - 项目类别:
New therapeutic approaches to identifying molecules for opioid abuse treatment
识别阿片类药物滥用分子的新治疗方法
- 批准号:
10385998 - 财政年份:2022
- 资助金额:
$ 85.5万 - 项目类别:
Machine learning approaches to predict Acetylcholinesterase inhibition
预测乙酰胆碱酯酶抑制的机器学习方法
- 批准号:
10378934 - 财政年份:2021
- 资助金额:
$ 85.5万 - 项目类别:
MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛选系统的数据
- 批准号:
10094026 - 财政年份:2020
- 资助金额:
$ 85.5万 - 项目类别:
MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛选系统的数据
- 批准号:
10470050 - 财政年份:2019
- 资助金额:
$ 85.5万 - 项目类别:
MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛选系统的数据
- 批准号:
10470050 - 财政年份:2019
- 资助金额:
$ 85.5万 - 项目类别:
MegaTrans – human transporter machine learning models
MegaTrans — 人类运输机机器学习模型
- 批准号:
9768844 - 财政年份:2019
- 资助金额:
$ 85.5万 - 项目类别:
MegaPredict for predicting natural product uses and their drug interactions
MegaPredict 用于预测天然产物用途及其药物相互作用
- 批准号:
10055938 - 财政年份:2019
- 资助金额:
$ 85.5万 - 项目类别:
Manufacture of an intracerebroventricular Enzyme Replacement Therapy for CLN1 Batten Disease
CLN1巴顿病脑室内酶替代疗法的研制
- 批准号:
10641950 - 财政年份:2018
- 资助金额:
$ 85.5万 - 项目类别:
Manufacture of an intracerebroventricular Enzyme Replacement Therapy for CLN1 Batten Disease
CLN1巴顿病脑室内酶替代疗法的研制
- 批准号:
10483470 - 财政年份:2018
- 资助金额:
$ 85.5万 - 项目类别:
相似国自然基金
内源激动剂ArA靶向TMEM175蛋白缓解帕金森病症的分子机制研究
- 批准号:32300565
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水体中β2-肾上腺素受体激动剂(PPCPs)间接光降解机理的量子化学与实验研究
- 批准号:22306084
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TRPV4/SKCa信号轴在AMPK激动剂抑制微小动脉舒张作用中的机制研究
- 批准号:82304584
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α7nAChR激动剂通过PGC-1α和HO-1调控肾小管上皮细胞线粒体的质和量进而改善脓毒症急性肾损伤的机制研究
- 批准号:82372172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于纳米铝乳剂和模式识别受体激动剂的复合型佐剂研究
- 批准号:82341043
- 批准年份:2023
- 资助金额:110 万元
- 项目类别:专项基金项目
相似海外基金
The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
- 批准号:
10751224 - 财政年份:2024
- 资助金额:
$ 85.5万 - 项目类别:
S1PR1 agonistによる脳血液関門制御を介した脳梗塞の新規治療法開発
S1PR1激动剂调节血脑屏障治疗脑梗塞新方法的开发
- 批准号:
24K12256 - 财政年份:2024
- 资助金额:
$ 85.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 85.5万 - 项目类别:
Studies on the Treatment of Opioid Use Disorder in Pregnancy
妊娠期阿片类药物使用障碍的治疗研究
- 批准号:
489082 - 财政年份:2023
- 资助金额:
$ 85.5万 - 项目类别:
Operating Grants
Comparative effectiveness of medications for opioid use disorder among youth
青少年阿片类药物使用障碍药物治疗效果比较
- 批准号:
491317 - 财政年份:2023
- 资助金额:
$ 85.5万 - 项目类别:
Operating Grants