Cellular and Tissue Pathogenesis
细胞和组织发病机制
基本信息
- 批准号:10675494
- 负责人:
- 金额:$ 21.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-22 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAdultAffectAnatomyAnimalsArchitectureAtaxiaBehaviorBehavioralBiological ModelsBirthBrainCell modelCellsCellular StructuresChildChild HealthCognitiveDedicationsDefectDevelopmentDiagnosisDiseaseDisease OutcomeDisease modelDrosophila genusElectronsEnvironmental Risk FactorEpilepsyEquipmentFacultyGenerationsGeneticGenetic studyGoalsHistologyHumanImaging technologyIndividualInduced pluripotent stem cell derived neuronsInfrastructureIntellectual and Developmental Disabilities Research CentersIntellectual functioning disabilityKnowledgeLinkMedicineMicroscopeMicroscopyModelingModernizationMolecularMotivationMotorMusNerve DegenerationNeurogliaNeuronsOrganOrganoidsPathogenesisPathogenicityPathologicPathologyPatientsPersonal SatisfactionPhenotypePopulationPositioning AttributePostdoctoral FellowRattusResearch PersonnelResearch Project GrantsResolutionResourcesScienceServicesStructureSynapsesTechniquesTissuesTrainingTransmission Electron MicroscopyVisualizationWorkbehavioral outcomebrain abnormalitiesbrain tissuecell assemblycell typeclinical phenotypecognitive functioncollegeconfocal imagingdesigndevelopmental diseaseeffective therapyexperienceexperimental analysisforginggenome editinggrasphuman diseasehuman modelhuman tissueimaging capabilitiesimaging modalityimprovedin uteroin vitro Assayin vivo Modelinduced pluripotent stem cellinnovationmouse geneticsneural circuitneural correlateneuropathologyresponsestudent trainingsynergismtooltransmission processtwo photon microscopytwo-photonultra high resolution
项目摘要
Intellectual and developmental disabilities (IDDs) are common and have a devastating impact on child health
around the world. Unfortunately, there are no effective treatments for the vast majority of IDDs and our
understanding of the pathogenic mechanism for majority of IDDs is incomplete. A major impediment to solving
how to better treat IDDs is our limited knowledge of how cells and tissues are impacted in each IDD. As a
direct response to this problem, we have assembled the Cell and Tissue Pathogenesis Core (CTP Core) to
study how brain anatomy and its associated pathologies arise. Our guiding rationale is that, solving how brain
structure is wired in typical development will place us in an ideal position to uncover how faulty brain circuits
eventually disrupt the ability to perform different behaviors in IDDs. Indeed, the pathological consequences of
altering brain development typically present as severe motor or cognitive difficulties in children. The goal of the
CTP Core is to provide our IDDRC Investigators with a centralized resource for comprehensive pathological
examination of tissue, high-resolution two-photon and confocal imaging, ultra-structure tracking by electron
microcopy, and the generation and characterization of human disease cellular models that are relevant to
IDDs. By combining human cellular models, such as iPSC-derived neurons or glia, with deep structural and
functional phenotyping of how the brain is mis-wired in different diseases or disease models, the CTP Core will
provide a unique opportunity to address how distinct genetic and environmental factors may impact the brain
and lead to alterations in cellular structure, connectivity and function. To accomplish these goals, we have
divided the CTP Core into three sub-Cores that operate in parallel, but with the common goal of resolving brain
structure as it relates to function and disease. The Neuropathology Sub-Core provides expertise in neuronal
tissue analysis from basic histology and transmission electron microscopy to in-depth circuit analysis; the
Microscopy Sub-Core provides access and training to state-of-the-art confocal and two-photon microscopy;
and the Human Disease Cellular Models Sub-Core provides expertise for studies requiring reprogramming,
characterization and genome editing of human induced pluripotent stem cells (iPSCs) and their progeny
derived from IDD patients. Therefore, a major feature of the CTP Core is investigator access to both classic
and modern analytical techniques using human tissue, in vivo model systems such as mouse, rat, drosophila,
and in vitro assays such as 3-dimensional brain organoids and neurons and glia derived from human iPSCs.
The ultimate goal of the CTP Core is to forge new avenues to improve the behavioral outcomes of IDD by
correcting brain function and restoring various motor and cognitive functions. The availability of major
equipment such as transmission and two-photon microscopes, existing effective workflow of services, and the
collective experience with many disease models highlight the arsenal of tools available to BCM IDDRC
investigators.
智力和发育障碍 (IDD) 很常见,对儿童健康具有毁灭性影响
世界各地。不幸的是,绝大多数 IDD 没有有效的治疗方法,我们的
对大多数 IDD 的致病机制的了解并不完整。解决问题的一大障碍
如何更好地治疗 IDD 是我们对每种 IDD 如何影响细胞和组织的了解有限的。作为一个
针对这个问题,我们组装了细胞和组织发病机制核心(CTP Core)
研究大脑解剖学及其相关病理学是如何产生的。我们的指导思想是,解决大脑如何
典型发育中的结构连接将使我们处于一个理想的位置,以揭示错误的大脑回路
最终破坏 IDD 执行不同行为的能力。事实上,病理后果
改变大脑发育通常表现为儿童严重的运动或认知困难。的目标
CTP Core 旨在为我们的 IDDRC 研究人员提供综合病理学的集中资源
组织检查、高分辨率双光子和共焦成像、电子超微结构跟踪
显微镜复制,以及与相关的人类疾病细胞模型的生成和表征
国际长途电话。通过将人类细胞模型(例如 iPSC 衍生的神经元或神经胶质细胞)与深层结构和
通过对不同疾病或疾病模型中大脑如何错误连接的功能表型进行分析,CTP 核心将
提供了一个独特的机会来解决不同的遗传和环境因素如何影响大脑
并导致细胞结构、连接性和功能的改变。为了实现这些目标,我们有
将 CTP 核心分为三个并行运行的子核心,但其共同目标是解决大脑问题
结构与功能和疾病的关系。神经病理学子核心提供神经元方面的专业知识
从基础组织学和透射电子显微镜到深入的电路分析的组织分析;这
显微镜子核心提供最先进的共焦和双光子显微镜的访问和培训;
人类疾病细胞模型子核心为需要重新编程的研究提供专业知识,
人类诱导多能干细胞 (iPSC) 及其后代的表征和基因组编辑
来自 IDD 患者。因此,CTP Core 的一个主要特点是调查员可以访问经典的
以及使用人体组织、体内模型系统(如小鼠、大鼠、果蝇)的现代分析技术,
以及体外测定,例如源自人类 iPSC 的 3 维脑类器官以及神经元和神经胶质细胞。
CTP 核心的最终目标是开辟新途径,通过以下方式改善 IDD 的行为结果:
纠正大脑功能并恢复各种运动和认知功能。主要的可用性
透射和双光子显微镜等设备、现有有效的服务工作流程以及
许多疾病模型的集体经验凸显了 BCM IDDRC 可用的工具库
调查人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roy Vincent Sillitoe其他文献
Roy Vincent Sillitoe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roy Vincent Sillitoe', 18)}}的其他基金
2023 Cerebellum Gordon Research Conference and Gordon Research Seminar
2023年小脑戈登研究大会暨戈登研究研讨会
- 批准号:
10683616 - 财政年份:2023
- 资助金额:
$ 21.49万 - 项目类别:
2023 Cerebellum Gordon Research Conference and Gordon Research Seminar
2023年小脑戈登研究大会暨戈登研究研讨会
- 批准号:
10683616 - 财政年份:2023
- 资助金额:
$ 21.49万 - 项目类别:
Spatial and temporal pathophysiology of developmental dystonia
发育性肌张力障碍的时空病理生理学
- 批准号:
10605284 - 财政年份:2022
- 资助金额:
$ 21.49万 - 项目类别:
相似国自然基金
基于增广拉格朗日函数的加速分裂算法及其应用研究
- 批准号:12371300
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
肠菌源性丁酸上调IL-22促进肠干细胞增殖加速放射性肠损伤修复的机制研究
- 批准号:82304065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
- 批准号:32372384
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于联邦学习自动超参调整的数据流通赋能加速研究
- 批准号:62302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
- 批准号:82360529
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 21.49万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 21.49万 - 项目类别:
Loss of transcriptional homeostasis of genes lacking CpG islands during aging
衰老过程中缺乏 CpG 岛的基因转录稳态丧失
- 批准号:
10814562 - 财政年份:2023
- 资助金额:
$ 21.49万 - 项目类别:
Hybrid Model-Based and Data-Driven Frameworks for High-Resolution Tomographic Imaging
基于混合模型和数据驱动的高分辨率断层成像框架
- 批准号:
10714540 - 财政年份:2023
- 资助金额:
$ 21.49万 - 项目类别:
Defining molecular mechanisms by which stimulant evoked dopamine drives inflammation and neuronal dysfunction in neuroHIV
定义兴奋剂诱发多巴胺驱动神经艾滋病毒炎症和神经元功能障碍的分子机制
- 批准号:
10685160 - 财政年份:2023
- 资助金额:
$ 21.49万 - 项目类别: