Distributed Phonetic Representations in the Brain
大脑中的分布式语音表征
基本信息
- 批准号:7752570
- 负责人:
- 金额:$ 20.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-01-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdultBasic ScienceBehavioralBiological Neural NetworksBrainCategoriesClassificationCommunication impairmentComplexDataData AnalysesDevelopmentDimensionsDiseaseDyslexiaEventFunctional Magnetic Resonance ImagingGoalsHumanImageImpairmentIndividual DifferencesJudgmentLanguageMapsMeasuresMethodsMiningModalityModelingMultivariate AnalysisNatureNeural Network SimulationPatternPerceptionPhoneticsPlayPreparationProcessPropertyRecoveryResearchResolutionRoleScanningSeriesSourceSpeechSpeech PerceptionSpeech SoundStimulusTechniquesTestingTrainingTranslational ResearchVariantbasebrain behaviordata acquisitiondesigninsightinterestlanguage processingneural patterningneuroimagingnovelnovel strategiesprogramspublic health relevancerelating to nervous systemresearch studyresponsespecific language impairmenttool
项目摘要
DESCRIPTION (provided by applicant): Neuroimaging research has advanced our understanding of human speech and language processing by providing insights about how speech sounds are processed in the brain. Most current fMRI studies lack the statistical and descriptive power to resolve complex information encoded in distributed patterns of activity, making them an awkward fit to the complexities of speech perception in the real world. In contrast, recent studies using novel multivariate approaches to fMRI analysis have revealed graded, distributed patterns of neural activity that promise to provide detailed, quantitative descriptions of perceptual categorization in the brain. Categorical perception requires enhancing contrast between stimuli of different categories and enhancing similarity between stimuli from the same category. The first specific aim of this proposal is to discover patterns of activity related to this process. High-resolution, event-related fMRI data will be collected while subjects passively listen to many unique, naturalistically resynthesized syllables. Patterns of activity that can be used to identify stimulus categories will be identified, and analyzed using multidimensional scaling analyses to explore the perceptual similarity space they define. The same type of analysis will then be applied to behavioral data, resulting in a novel means of exploring brain-behavior relationships. The second specific aim is focused on exploring methodological issues presented by multivariate analysis of speech categorization, in particular: What is the best way to identify patterns of neural activity that contain information about stimulus identity? A neural network classifier will be trained to determine which syllable was presented on each trial based on the neural response to that stimulus. A series of tests will then be conducted to determine whether this approach provides advantages over standard univariate techniques, or whether the complementary strengths of classifier- and univariate-based methods can be combined. A number of technical details regarding these analyses will be explored in detail, in order to arrive at a set of "best practices" that will permit this technique to be optimally integrated into a larger program of research including multi-modality neuroimaging and behavioral studies. PUBLIC HEALTH RELEVANCE If successful, the proposed research will provide a new set of analytic tools for the study of the neural basis of speech perception. These techniques will be applicable to research on adult processing, typical development, and a range of communication disorders -- including dyslexia and specific language impairment -- in which speech perception deficits may play a central role. Specifically, it will provide a means to better characterize individual differences in the representation of speech categories, and to explore more detailed hypotheses about the nature of deficits in different disorders than is possible with currently predominant techniques.
描述(由申请人提供):神经影像学研究通过提供有关如何在大脑中处理语音的洞察力来提高我们对人言语和语言处理的理解。当前的大多数功能磁共振成像研究都缺乏解决以分布式活动模式编码的复杂信息的统计和描述能力,这使得它们适合现实世界中语音感知的复杂性。相比之下,使用新型的多元方法进行fMRI分析的最新研究揭示了神经活动的分级分布模式,这些模式有望提供大脑中知觉分类的详细定量描述。分类感知需要增强不同类别的刺激之间的对比度,并提高同一类别的刺激之间的相似性。该提案的第一个具体目的是发现与此过程相关的活动模式。高分辨率,与事件相关的FMRI数据将被收集,而受试者被动地聆听许多独特的自然意义重新合成的音节。将识别可用于识别刺激类别的活动模式,并使用多维缩放分析分析,以探索其定义的知觉相似性空间。然后,相同类型的分析将应用于行为数据,从而导致一种探索脑行为关系的新方法。第二个具体目的集中在探索通过语音分类的多元分析提出的方法论问题,特别是:确定包含有关刺激身份信息的神经活动模式的最佳方法是什么?将训练神经网络分类器,以根据对该刺激的神经反应在每个试验中确定哪个音节。然后将进行一系列测试,以确定这种方法是否提供了比标准单变量技术的优势,或者是否可以将基于分类器和单变量方法的互补优势组合在一起。将详细探讨有关这些分析的许多技术细节,以便获得一系列“最佳实践”,这些实践将使该技术最佳地集成到更大的研究计划中,包括多模式神经影像学和行为研究。公共卫生相关性如果成功,则拟议的研究将为研究语音感知的神经基础提供一组新的分析工具。这些技术将适用于成人处理,典型发展和一系列沟通障碍(包括阅读障碍和特定语言障碍)的研究,其中语音感知缺陷可能起着核心作用。具体而言,它将提供一种手段,以更好地表征语音类别表示的个体差异,并探讨与当前主要技术相比,不同疾病中缺陷性质的更详细的假设。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Left fusiform BOLD responses are inversely related to word-likeness in a one-back task.
左梭形粗体响应与单背任务中的单词相似度成反比。
- DOI:10.1016/j.neuroimage.2010.12.062
- 发表时间:2011-04-01
- 期刊:
- 影响因子:5.7
- 作者:Wang X;Yang J;Shu H;Zevin JD
- 通讯作者:Zevin JD
Task by stimulus interactions in brain responses during Chinese character processing.
- DOI:10.1016/j.neuroimage.2012.01.036
- 发表时间:2012-04-02
- 期刊:
- 影响因子:5.7
- 作者:Yang, Jianfeng;Wang, Xiaojuan;Shu, Hua;Zevin, Jason D.
- 通讯作者:Zevin, Jason D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason D Zevin其他文献
Jason D Zevin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason D Zevin', 18)}}的其他基金
Neurocognitive Basis of Treatment Resistance in Young Children with SLI
SLI 幼儿治疗抵抗的神经认知基础
- 批准号:
9420313 - 财政年份:2013
- 资助金额:
$ 20.91万 - 项目类别:
Distributed Phonetic Representations in the Brain
大脑中的分布式语音表征
- 批准号:
7587023 - 财政年份:2009
- 资助金额:
$ 20.91万 - 项目类别:
Neurocognitive Basis of Treatment Resistance in Young Children with SLI
SLI 幼儿治疗抵抗的神经认知基础
- 批准号:
8707512 - 财政年份:
- 资助金额:
$ 20.91万 - 项目类别:
相似国自然基金
磁性功能微球在核酸快速提取及检测中的基础科学问题探究
- 批准号:52373131
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
极端高温环境流动沸腾技术的基础科学问题及关键材料研究
- 批准号:52333015
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
先进航空发动机中超临界态煤油燃烧过程中的基础科学问题研究
- 批准号:52336006
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
企业基础科学研究的动因、机制与经济效果研究
- 批准号:72302229
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
耐高温高电压SiC功率器件灌封材料的多性能协同中的基础科学问题研究
- 批准号:52272001
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Biology at birth: the role of infancy in providing the foundation for lifetime success
出生时的生物学:婴儿期为终身成功奠定基础的作用
- 批准号:
10608856 - 财政年份:2023
- 资助金额:
$ 20.91万 - 项目类别:
Brain Development after Early-Life Antipsychotic Treatment
早期抗精神病治疗后的大脑发育
- 批准号:
10629613 - 财政年份:2023
- 资助金额:
$ 20.91万 - 项目类别:
Investigating the role of oxytocin signaling in the social regulation of eating
研究催产素信号在饮食社会调节中的作用
- 批准号:
10750734 - 财政年份:2023
- 资助金额:
$ 20.91万 - 项目类别:
Implications of Prefrontal Cortex Development for Adolescent Reward Seeking Behavior
前额皮质发育对青少年奖励寻求行为的影响
- 批准号:
10739548 - 财政年份:2023
- 资助金额:
$ 20.91万 - 项目类别:
Optimizing a Social Connectedness Intervention for Young Adults with Cancer
优化年轻癌症患者的社会联系干预
- 批准号:
10734095 - 财政年份:2023
- 资助金额:
$ 20.91万 - 项目类别: