Transport transforms for biomedical data modeling, estimation, and classification
用于生物医学数据建模、估计和分类的传输转换
基本信息
- 批准号:10672626
- 负责人:
- 金额:$ 35.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressBiologicalBrain imagingCOVID-19 patientCellsClassificationClinical SciencesCollaborationsCommunitiesComplementComplexComputer ModelsComputer softwareCytometryDataData AnalysesData SetDevelopmentDisciplineDocumentationElectronic Health RecordEnergy consumptionEngineeringEnsureFundingFutureGene ExpressionGenomeGoalsImageImaging technologyKnee OsteoarthritisLearningLettersMagnetic ResonanceMagnetic Resonance ImagingMathematicsMeasurementMeasuresMethodologyMethodsModelingMolecularOpticsOrganOutcomePathologyPatternPattern RecognitionPhaseProblem SolvingRiskSamplingScientistSeriesSignal TransductionSpecific qualifier valueSpeedSystemTechniquesTechnologyTrainingVisualizationabsorptionbiomedical data sciencebreast cancer diagnosiscancer riskchemical reactiondata miningdata modelingdata spacedeep learningdeep learning modelelectric impedanceexperimental studyhigh dimensionalityimaging Segmentationimprovedinnovationlearning strategylecturesmachine learning modelmathematical modelmicroscopic imagingmorphometrymultidimensional dataneural networkpredictive modelingradiological imagingradiomicsreconstructionsoftware developmenttechnology research and developmenttooltumor progressionvirtualvoltage
项目摘要
The goal of the project is to develop a new mathematical and computational
modeling framework for from biomedical data extracted from biomedical
experiments such as voltages, spectra (e.g. mass, magnetic resonance,
impedance, optical absorption, …), microscopy or radiology images, gene
expression, and many others. Scientists who are looking to understand
relationships between different molecular and cellular measurements are often
faced with questions involving deciphering differences between different cell or
organ measurements. Current approaches (e.g. feature engineering and
classification, end-to-end neural networks) are often viewed as “black boxes,”
given their lack of connection to any biological mechanistic effects. The approach
we propose builds from the “ground up” an entirely new modeling framework
build based on recently developed invertible transformation. As such, it allows for
any machine learning model to be represented in original data space, allowing for
not only increased accuracy in prediction, but also direct visualization and
interpretation. As an outcome of the previous funding period, our current
approach outperforms other mathematical modeling tools when processing
segmented signals and images by a wide margin in terms of accuracy,
computational complexity, amount of training data needed, interpretability and
robustness to out of distribution samples. In this current phase we seek to
generalize the method beyond segmented images and signals to virtually any
dataset type. We will explore proof of concept applications in cytometry,
pathology, and radiomics.
该项目的目标是开发一种新的数学和计算方法
从生物医学中提取的生物医学数据的建模框架
实验,例如电压、光谱(例如质量、磁共振、
阻抗、光吸收……)、显微镜或放射学图像、基因
表达,以及许多其他寻求理解的科学家。
不同分子和细胞测量之间的关系通常是
面临涉及破译不同细胞之间差异或
当前的方法(例如特征工程和
分类、端到端神经网络)通常被视为“黑匣子”,
鉴于它们与任何生物机械效应缺乏联系。
我们建议从“头开始”构建一个全新的建模框架
基于最近开发的可逆变换构建。
在原始数据空间中表示的任何机器学习模型,允许
不仅提高了预测的准确性,而且还可以直接可视化和
作为上一个资助期的结果,我们当前的解释。
该方法在处理时优于其他数学建模工具
在准确度方面大幅分割信号和图像,
计算复杂度、所需训练数据量、可解释性和
在当前阶段,我们寻求对分布样本的鲁棒性。
将该方法推广到分割图像和信号之外的几乎任何领域
我们将探索细胞计数中的概念验证应用,
病理学和放射组学。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Massive image-based single-cell profiling reveals high levels of circulating platelet aggregates in patients with COVID-19.
基于大规模图像的单细胞分析揭示了 COVID-19 患者循环血小板聚集水平较高。
- DOI:
- 发表时间:2021-12-09
- 期刊:
- 影响因子:16.6
- 作者:Nishikawa, Masako;Kanno, Hiroshi;Zhou, Yuqi;Xiao, Ting;Suzuki, Takuma;Ibayashi, Yuma;Harmon, Jeffrey;Takizawa, Shigekazu;Hiramatsu, Kotaro;Nitta, Nao;Kameyama, Risako;Peterson, Walker;Takiguchi, Jun;Shifat;Zhuang, Yan
- 通讯作者:Zhuang, Yan
Neural Networks, Hypersurfaces, and the Generalized Radon Transform.
神经网络、超曲面和广义氡变换。
- DOI:
- 发表时间:2020-07
- 期刊:
- 影响因子:14.9
- 作者:Kolouri, Soheil;Yin, Xuwang;Rohde, Gustavo K
- 通讯作者:Rohde, Gustavo K
Data-driven Identification of Parametric Governing Equations of Dynamical Systems Using the Signed Cumulative Distribution Transform.
使用有符号累积分布变换对动力系统参数控制方程进行数据驱动识别。
- DOI:10.1016/j.cma.2024.116822
- 发表时间:2023-08-23
- 期刊:
- 影响因子:7.2
- 作者:A. Rubaiyat;D. H. Thai;J. Nichols;M. Hutchinson;S. Wallen;Christina J. Naify;Nathan Geib;M. Haberman;G. Rohde
- 通讯作者:G. Rohde
Invariance encoding in sliced-Wasserstein space for image classification with limited training data.
切片 Wasserstein 空间中的不变性编码,用于训练数据有限的图像分类。
- DOI:
- 发表时间:2023-05
- 期刊:
- 影响因子:8
- 作者:Shifat;Zhuang, Yan;Li, Shiying;Rubaiyat, Abu Hasnat Mohammad;Yin, Xuwang;Rohde, Gustavo K
- 通讯作者:Rohde, Gustavo K
PARTITIONING SIGNAL CLASSES USING TRANSPORT TRANSFORMS FOR DATA ANALYSIS AND MACHINE LEARNING.
使用传输变换对信号类别进行分区以进行数据分析和机器学习。
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Aldroubi, Akram;Li, Shiying;Rohde, Gustavo K
- 通讯作者:Rohde, Gustavo K
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gustavo Kunde Rohde其他文献
Label-efficient Breast Cancer Histopathological Image Classification
标签高效的乳腺癌组织病理学图像分类
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:7.7
- 作者:
Qi Qi;Yanlong Li;Jitian Wang;Han Zheng;Yue Huang;Xinghao Ding;Gustavo Kunde Rohde - 通讯作者:
Gustavo Kunde Rohde
Gustavo Kunde Rohde的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gustavo Kunde Rohde', 18)}}的其他基金
Lagrangian computational modeling for biomedical data science
生物医学数据科学的拉格朗日计算模型
- 批准号:
10307595 - 财政年份:2019
- 资助金额:
$ 35.51万 - 项目类别:
Lagrangian computational modeling for biomedical data science
生物医学数据科学的拉格朗日计算模型
- 批准号:
10063532 - 财政年份:2019
- 资助金额:
$ 35.51万 - 项目类别:
Utility of Effusion Cytology and Image Analysis in the Diagnosis of Mesothelioma
积液细胞学和图像分析在间皮瘤诊断中的应用
- 批准号:
8771979 - 财政年份:2014
- 资助金额:
$ 35.51万 - 项目类别:
Utility of Effusion Cytology and Image Analysis in the Diagnosis of Mesothelioma
积液细胞学和图像分析在间皮瘤诊断中的应用
- 批准号:
9369881 - 财政年份:2014
- 资助金额:
$ 35.51万 - 项目类别:
Utility of Effusion Cytology and Image Analysis in the Diagnosis of Mesothelioma
积液细胞学和图像分析在间皮瘤诊断中的应用
- 批准号:
8883458 - 财政年份:2014
- 资助金额:
$ 35.51万 - 项目类别:
Automated High-Throuput Estimation and Modeling of Protein Network Distributions
蛋白质网络分布的自动高通量估计和建模
- 批准号:
8244428 - 财政年份:2010
- 资助金额:
$ 35.51万 - 项目类别:
Automated High-Throuput Estimation and Modeling of Protein Network Distributions
蛋白质网络分布的自动高通量估计和建模
- 批准号:
7899624 - 财政年份:2010
- 资助金额:
$ 35.51万 - 项目类别:
相似国自然基金
近红外聚集诱导增强四苯乙烯类纳米材料电致化学发光超灵敏脑癌标志物生物传感器及生物成像研究
- 批准号:
- 批准年份:2021
- 资助金额:61 万元
- 项目类别:面上项目
基于“中枢神经炎症机制-脑区微环境-成像组学技术”探索参芪扶正注射液生物质控评价方法
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:
脑胶质瘤组织的同步辐射红外谱学及显微成像研究
- 批准号:U1932132
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:联合基金项目
多组学及质谱成像技术研究人参-五味子调控微生物-肠-脑轴治疗阿尔茨海默症的作用机制
- 批准号:81873193
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于质谱成像技术的糖尿病脑病生物标志物及其药物干预机制的研究
- 批准号:81803483
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Role of Ethnic Racial Discrimination on the Development of Anxious Hypervigilance in Latina Youth
民族种族歧视对拉丁裔青少年焦虑过度警觉的影响
- 批准号:
10752122 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Next Generation Opto-GPCRs for Neuromodulatory Control
用于神经调节控制的下一代 Opto-GPCR
- 批准号:
10515612 - 财政年份:2023
- 资助金额:
$ 35.51万 - 项目类别:
Neuromelanin MRI: A tool for non-invasive investigation of dopaminergic abnormalities in adolescent substance use.
神经黑色素 MRI:一种用于非侵入性调查青少年物质使用中多巴胺能异常的工具。
- 批准号:
10735465 - 财政年份:2023
- 资助金额:
$ 35.51万 - 项目类别: