Physicochemical properties driving membraneless organelle assembly in bacteria
驱动细菌无膜细胞器组装的物理化学特性
基本信息
- 批准号:10697341
- 负责人:
- 金额:$ 52.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAllyAutomobile DrivingBacteriaBacterial ChromosomesBacterial DNABacterial PhysiologyBehaviorBiochemicalBiochemistryBiogenesisCell SeparationCell SurvivalCell physiologyCellsChromosome CondensationChromosome StructuresChromosomesComplementComplexCytoplasmDNADNA BindingDNA-Binding ProteinsDNA-Directed RNA PolymeraseDiffuseDiffusionEngineeringEnvironmentEukaryotic CellFeedbackGeneticGoalsGrowthHigher Order Chromatin StructureImageIn VitroKineticsLifeLiquid substanceMapsMeasuresMediatingMembraneMicroscopyModelingMolecularMotionNucleic AcidsOrganellesOrganismPhasePhase TransitionPhysical condensationPhysiologicalProcessPropertyProteinsProteomicsResearchRheologyRibosomesRoleSpatial DistributionSpectrum AnalysisStarvationStressStructureSystemTestingTimeTreesWorkantibiotic designcell injurychemical propertychromatin immunoprecipitationchromosome conformation capturedefined contributionenvironmental changeexperimental studygenome-widegenomic locusin silicoin vivoinnovationliquid crystalmacromoleculemechanical behaviormechanical propertiesmultidisciplinarynovelphysical propertyrational designresponsesingle moleculesmall moleculesuperresolution imagingsuperresolution microscopytheoriestoolviscoelasticity
项目摘要
Project Summary
Recently, breakthrough work has led to a wave of discoveries of biomolecular condensates. Such
membraneless organelles that cluster specific biomolecules away from the surrounding cellular milieu have
long been theorized and are now experimentally tractable. These dynamic structures contain a wide range of
proteins and nucleic acids and assemble through the process of phase separation. While many proteins are
prone to phase separation (either by themselves or via complexation with other proteins, nucleic acids, or small
molecules), these condensates have primarily been found in eukaryotic cells. Since bacteria do not typically
contain membrane-enclosed organelles, we hypothesize that bacteria instead use phase-separated
membraneless organelles as novel organizers of their cytoplasm to regulate biochemical activity while they
respond to changing environmental conditions.
In this proposal, our multidisciplinary team combines state-of-the-art in vitro approaches, in vivo experiments,
and in silico modeling and theory to explore the structural organization of the bacterial cytoplasm and
characterize phase-separated membraneless organelles in bacteria. We will focus on a candidate protein
system, the DNA-binding protein from starved cells (Dps), that drives the organization of the bacterial
chromosome and leads DNA to form a separate subcellular compartment within bacterial cells upon stress. We
will first study this system’s chemical and mechanical properties, map the phase space for condensate
formation, ascertain whether it occurs through spinodal decomposition or nucleation and condensate droplet
growth, and determine its kinetics in vitro. Next, we will elucidate how phase separation controls the access of
cytoplasmic and nucleoid-associated biomolecules to the bacterial chromosome and image the structure of
membraneless DNA-organizing organelles in living bacteria to measure the effect of condensation on
chromosome structure and dynamics in vivo. Finally, we will characterize the impact of chromosome phase
separation on the mobility of cytoplasmic and DNA-binding proteins in vivo and determine the role of
chromosomal condensation in bacterial physiology and survival. Together, our results will define the
contributions of the unique physicochemical properties of the bacterial cytoplasm to compartmentalization
within these cells. Phase separation provides an alternate mechanism for spatial and functional organization in
the bacterial domain of life. Indeed, phase separation is emerging as a universal organizing principle across
the tree of life, and our work will ultimately shed light on the origin of life and provide new targets for rationally
designed antibiotics.
项目概要
最近,突破性的工作引发了一波生物分子凝聚体的发现热潮。
将特定生物分子聚集成远离周围细胞环境的无膜细胞器
这些动态结构早已被理论化,现在可以通过实验进行处理。
蛋白质和核酸通过相分离过程组装。
易于发生相分离(通过其本身或通过与其他蛋白质、核酸或小分子络合)
分子),这些缩合物主要存在于真核细胞中,因为细菌通常不存在。
含有膜封闭的细胞器,我们勇敢地认为细菌使用相分离
无膜细胞器作为其细胞质的新型组织者,在它们调节生化活性的同时
应对不断变化的环境条件。
在这项提案中,我们的多学科团队结合了最先进的体外方法、体内实验、
并通过计算机建模和理论探索细菌细胞质的结构组织和
表征细菌中相分离的无膜细胞器我们将重点关注候选蛋白质。
系统,来自饥饿细胞 (Dps) 的 DNA 结合蛋白,驱动细菌的组织
染色体并导致DNA在压力下在细菌细胞内形成独立的亚细胞区室。
将首先研究该系统的化学和机械特性,绘制凝结水的相空间
形成,确定它是否通过旋节线分解或成核和冷凝液滴发生
接下来,我们将阐明相分离如何控制其进入。
将细胞质和类核相关生物分子附着到细菌染色体上,并对细菌染色体的结构进行成像
活细菌中的无膜 DNA 组织细胞器,用于测量冷凝对
最后,我们将描述染色体相位的影响。
分离对体内细胞质和 DNA 结合蛋白的迁移率并确定其作用
我们的结果将共同定义细菌生理学和存活中的染色体凝聚。
细菌细胞质独特的理化性质对区室化的贡献
在这些细胞内,相分离为空间和功能组织提供了另一种机制。
事实上,在生命的细菌领域,相分离正在成为一种普遍的组织原则。
生命之树,我们的工作最终将揭示生命的起源,并为理性研究提供新的目标
设计的抗生素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julie Biteen其他文献
Julie Biteen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julie Biteen', 18)}}的其他基金
Mapping the Interactions and Dynamics that Organize Bacteria Cells
绘制细菌细胞组织的相互作用和动态图
- 批准号:
10341319 - 财政年份:2022
- 资助金额:
$ 52.15万 - 项目类别:
Mapping the Interactions and Dynamics that Organize Bacteria Cells
绘制细菌细胞组织的相互作用和动态图
- 批准号:
10630966 - 财政年份:2022
- 资助金额:
$ 52.15万 - 项目类别:
Physicochemical properties driving membraneless organelle assembly in bacteria
驱动细菌无膜细胞器组装的物理化学特性
- 批准号:
10727036 - 财政年份:2021
- 资助金额:
$ 52.15万 - 项目类别:
Diversity Supplement: Physicochemical properties driving membraneless organelle assembly in bacteria
多样性补充:驱动细菌无膜细胞器组装的物理化学特性
- 批准号:
10566672 - 财政年份:2021
- 资助金额:
$ 52.15万 - 项目类别:
Physicochemical properties driving membraneless organelle assembly in bacteria
驱动细菌无膜细胞器组装的物理化学特性
- 批准号:
10274445 - 财政年份:2021
- 资助金额:
$ 52.15万 - 项目类别:
Single-molecule imaging of membrane-localized transcription complexes in bacteria
细菌膜定位转录复合物的单分子成像
- 批准号:
8424204 - 财政年份:2012
- 资助金额:
$ 52.15万 - 项目类别:
Single-molecule imaging of membrane-localized transcription complexes in bacteria
细菌膜定位转录复合物的单分子成像
- 批准号:
8284549 - 财政年份:2012
- 资助金额:
$ 52.15万 - 项目类别:
相似海外基金
University of Iowa Institute for Clinical and Translational Science
爱荷华大学临床与转化科学研究所
- 批准号:
10622212 - 财政年份:2023
- 资助金额:
$ 52.15万 - 项目类别:
Physicochemical properties driving membraneless organelle assembly in bacteria
驱动细菌无膜细胞器组装的物理化学特性
- 批准号:
10727036 - 财政年份:2021
- 资助金额:
$ 52.15万 - 项目类别:
1/2 Genetics at an extreme: an efficient genomic study of individuals with clinically severe major depression receiving ECT
1/2 极端遗传学:对接受 ECT 的临床严重抑郁症患者进行有效的基因组研究
- 批准号:
10462540 - 财政年份:2019
- 资助金额:
$ 52.15万 - 项目类别:
2/2 Genetics at an extreme: an efficient genomic study of individuals with clinically severe major depression receiving ECT
2/2 极端遗传学:对接受 ECT 的临床严重抑郁症患者进行有效的基因组研究
- 批准号:
10674837 - 财政年份:2019
- 资助金额:
$ 52.15万 - 项目类别: