Mechanism of cryptococcal fitness, innate defense subversion, and the adaptive immune skewing in lungs
隐球菌适应性机制、先天防御颠覆和肺部适应性免疫偏差
基本信息
- 批准号:10696521
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlveolarAlveolar MacrophagesAnabolismAnimalsAntifungal AgentsBacteriaBiologicalCellsCollectinsCryptococcusCryptococcus neoformansCryptococcus neoformans infectionDataDevelopmentDisaccharidesExcisionExposure toFutureGoalsHealthHost DefenseHumanIatrogenesisImmuneImmune EvasionImmune responseImmune systemImmunologic MemoryImmunologic StimulationIn complete remissionInfectionInnate Immune ResponseIntegration Host FactorsInterceptKineticsLaboratoriesLearningLungLung diseasesLung infectionsMammalian CellMediatingMemoryMentorsMicrobeModelingMolecularMorbidity - disease rateMusMycosesOutcomePathogenesisPathway interactionsPhagocytosisProcessProductionPulmonary Surfactant-Associated Protein APulmonary Surfactant-Associated Protein DResearchResearch PersonnelResearch TrainingRiskRoleStressT-LymphocyteTrainingTraining ProgramsTrehaloseVeteransVirulenceVirulence FactorsWorkantimicrobialarmcancer therapycareercareer developmentfitnessfungicidefungushigh riskimprovedinhibitorinorganic phosphateinsightmicrobialmortalitymouse modelmultidisciplinaryneutrophilnew technologynovelopportunistic pathogenpathogenpathogenic funguspost-doctoral trainingprogramsrecruitresponseskillssugarsurfactant
项目摘要
Cryptococcus neoformans (C. neo), is one of the most significant fungal pathogens worldwide.
However, much is still unknown on how it interacts with the host to evade and subvert the immune response.
Here we propose to study the biological effects of intercepting the trehalose sugar biosynthetic pathway, which
our data suggest affects interactions of cryptococcus with multiple lines of host defenses and could serve as an
“Achilles heel” for the fungus. Trehalose-6-phosphate synthase (TPS1) catalyzes the first step in the
biosynthetic pathway to generate trehalose, a disaccharide that canonically protects C. neo (and other
microbes) against stress, which is not synthesized or required by mammalian cells. TPS1 has been described
as a virulence factor for C. neo in multiple animal infection models, but the mechanistic underpinnings are
undefined. We propose to mechanistically uncover how TPS1-deletion alters fungal-host interactions to drive
this increased fungal control.
Our preliminary data show that in murine models of pulmonary infection, trehalose-deficient C. neo
(tps1Δ) is very rapidly cleared due to improved immune protection. As such, we hypothesize that cryptococcal
TPS1 is required to protect the fungus against all 3 lines of pulmonary host defenses via (1) interference with
the local resident defenses; (2) the recruitment/activation of the innate immune cells for early fungal control,
and (3) modulation of the adaptive memory responses. We propose that trehalose is required to protect C. neo
against innate factors in the alveolar space, such as surfactants. Our preliminary data support a role for the
surfactant proteins A and D in trehalose-deficient C. neo control (Aim 1). We also propose that the loss of
trehalose facilitates rapid fungal clearance by resident innate immune cells, specifically neutrophils (Aim2).
Further, our preliminary data suggest that the loss of Tps1-function by Cryptococcus results in an
immunostimulation that supports the development of protective skewing and an adaptive immune memory
response (Aim 3). This improved the level of immunoprotection supports that targeting the TPS pathway, apart
from directly aiding the fungal removal, can induce long-term protective immune memory effects. Eventually,
understanding how trehalose alters cryptococcal interactions with host defenses could support the
development of a future class of broad antifungal inhibitors that could aid the treatment of multiple types of
fungal infections. In summary, this work will provide novel context for how C. neo avoids pulmonary
host defenses and how these interactions can be exploited.
The studies proposed above make up the scientific basis for the VA CDA-2 program that will provide
training and career development for Dr. Kristie Goughenour into an independent VA investigator. Dr.
Goughenour completes the third year of her postdoctoral training in the Multidisciplinary T32 Research Training
Program in Lung Disease. Her primary research focus is on host-pathogen interactions of pathogenic fungi in
pulmonary infections. Her training has provided her with both the technical ability and theoretical framework to
dissect both the human host factors and the microbial virulence mechanisms that interact to determine the
outcomes of infections. This proposal builds upon her skills in molecular mechanisms of fungal pathogenesis
and host responses to fungal pathogens to combine into unique expertise in host immune control of pulmonary
fungal pathogens and novel mechanisms of fungal immune evasion. Dr. Goughenour will strengthen her
expertise in different aspects of immune processes and learn several new technologies. Her mentoring team of
5 top experts in their respective fields has been carefully developed to provide expertise and career support
while she transitions towards independence and to provide aid on the proposed studies.
新型隐球菌(C. neo)是全世界最重要的真菌病原体之一。
然而,关于它如何与宿主相互作用以逃避和破坏免疫反应,目前仍不清楚。
在这里,我们建议研究拦截海藻糖生物合成途径的生物学效应,该途径
我们的数据表明影响隐球菌与多道宿主防御线的相互作用,并且可以作为
真菌的“致命弱点”是海藻糖-6-磷酸合酶 (TPS1) 催化第一步。
产生海藻糖的生物合成途径,海藻糖是一种典型地保护新梭菌(和其他
微生物)对抗压力,TPS1 不是哺乳动物细胞合成或需要的。
在多种动物感染模型中作为 C. neo 的毒力因子,但其机制基础是
我们建议机械地揭示TPS1删除如何改变真菌-宿主相互作用以驱动。
这增加了真菌控制。
我们的初步数据表明,在肺部感染的小鼠模型中,海藻糖缺乏的 C. neo
由于免疫保护的改善,(tps1Δ) 被非常迅速地清除,因此,我们对隐球菌进行了研究。
TPS1 需要通过以下方式保护真菌免受肺部宿主防御的所有 3 条防线:(1) 干扰
(2) 招募/激活先天免疫细胞以进行早期真菌控制,
(3) 适应性记忆反应的调节我们提出需要海藻糖来保护 C. neo。
对抗肺泡腔中的先天因素,例如表面活性剂,我们的初步数据支持了其作用。
海藻糖缺陷 C. neo 对照中的表面活性蛋白 A 和 D(目标 1)。
海藻糖促进固有先天免疫细胞(特别是中性粒细胞)快速清除真菌 (Aim2)。
此外,我们的初步数据表明,隐球菌 Tps1 功能的丧失会导致
支持保护性偏差和适应性免疫记忆发展的免疫刺激
反应(目标 3),这提高了免疫保护水平,支持靶向 TPS 途径。
直接帮助去除真菌,最终可以诱导长期的保护性免疫记忆效应。
了解海藻糖如何改变隐球菌与宿主防御的相互作用可以支持
开发未来一类广泛的抗真菌抑制剂,可以帮助治疗多种类型的真菌
总之,这项工作将为 C. neo 如何避免肺部感染提供新的背景。
宿主防御以及如何利用这些相互作用。
上述研究构成了 VA CDA-2 计划的科学基础,该计划将提供
将 Kristie Goughenour 博士培养为一名独立的 VA 调查员。
Goughenour 在多学科 T32 研究培训中完成了第三年的博士后培训
她的肺部疾病项目主要研究病原真菌的宿主与病原体的相互作用。
她的培训为她提供了处理肺部感染的技术能力和理论框架。
剖析相互作用的人类宿主因素和微生物毒力机制,以确定
该提案建立在她在真菌发病机制分子机制方面的技能基础上。
和宿主对真菌病原体的反应,结合成肺部宿主免疫控制的独特专业知识
真菌病原体和真菌免疫逃避的新机制将增强她的能力。
她的指导团队在免疫过程的不同方面拥有专业知识,并学习多种新技术。
精心培养了5位各自领域的顶尖专家,提供专业知识和职业支持
同时她向独立过渡并为拟议的研究提供援助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristie D Goughenour其他文献
Kristie D Goughenour的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
PPAR-γ介导肺泡巨噬细胞表型转变的分子机制及其对流感病毒致病性的影响
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
Cpt1a调控脂肪酸氧化对肺泡巨噬细胞焦亡以及ALI炎症始动环节的影响
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tim-3调控肺泡巨噬细胞极化和功能对脓毒症急性肺损伤发生发展的影响及其机制研究
- 批准号:82060021
- 批准年份:2020
- 资助金额:34 万元
- 项目类别:地区科学基金项目
IL-10调控肺泡巨噬细胞再极化及其对ALI后期肺间质纤维化形成的影响
- 批准号:82070086
- 批准年份:2020
- 资助金额:54 万元
- 项目类别:面上项目
HVEM调控肺泡巨噬细胞极化影响脓毒症急性肺损伤转归的作用和机制
- 批准号:81900077
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of SARS-CoV-2 pathogenesis during HIV/SIV infection
HIV/SIV 感染期间 SARS-CoV-2 的发病机制
- 批准号:
10685195 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Lung epithelial cell-derived C3 in acute lung injury
肺上皮细胞衍生的 C3 在急性肺损伤中的作用
- 批准号:
10720687 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The role of pathogen-experienced macrophage subsets in mediating lung immunity and heterologous protection
经历病原体的巨噬细胞亚群在介导肺免疫和异源保护中的作用
- 批准号:
10753773 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Modulation of Macrophage Antifungal Activity by the Transcriptional Co-regulator CITED1
转录辅助调节因子 CITED1 对巨噬细胞抗真菌活性的调节
- 批准号:
10727860 - 财政年份:2023
- 资助金额:
-- - 项目类别: