Genetic Analysis of Mosquito Metamorphosis

蚊子变态的遗传分析

基本信息

  • 批准号:
    7692806
  • 负责人:
  • 金额:
    $ 11.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-20 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Yearly, millions of people die, or are seriously debilitated, from malaria, dengue fever, yellow fever and several forms of viral encephalitis. Hematophageous mosquitoes transmit the causative agents of these diseases [1, 2]. As global warming, and migration of human and mosquito populations increases, dengue fever may spread to dengue-free regions of the United States [3-8]. Current methods to control these diseases emphasize immunization, chemical prophylaxis, control of the insect vectors, and reduced contact with insect vectors. They are useful, but the diseases remain significant problems, especially in underdeveloped tropical countries [9, 10]. Although widely used, little is known concerning the molecular mechanisms by which chemical vector control agents work, leaving limited options to modify or improve these methods of control. New initiatives targeting mosquito biology are in development. One initiative is the development of transgenic mosquitoes having a reduced ability to transmit the disease agents [11-18]. In pursuit of this goal, molecular-genetic techniques have been applied to mosquito research. These include the sequencing of the Anopheles gambiae[19], Aedes aegypti [20] and Culex pipiens genomes[21], developing techniques to produce stable transgenic mosquitoes [22-32], the use of RNAi techniques [16, 33-37] and development of genetic drive systems [24, 38-41]. Additionally, molecular-genetic techniques may reveal molecular mechanisms by which chemical mosquito control agents work. Along this line, our long term goal is to understand the molecular- genetic mechanisms that control mosquito larval midgut growth and metamorphosis in order to identify processes that can be exploited to better control populations of hematophageous, disease carrying mosquitoes. The information obtained may result in the design of more specific and bio-rational larvicidal chemicals, and in the design of transgenic mosquitoes in which growth and metamorphic processes are altered so that adult population densities, or fecundity, are reduced. The central hypothesis driving this proposal is the genes methoprene tolerant (met) and broad (br) are central to the transcription factor cascade that controls metamorphosis, and in the pathway by which juvenile hormone analogues, widely used in commercial larvicides, interfere with metamorphosis. Proposed here are genetic tests of the central hypothesis. We use mosquitoes because the information we discover will likely be directly applicable to the control of mosquito populations. This approach is now possible because we have developed RNAi techniques for use in mosquito larvae, giving us a unique opportunity to genetically examine the role that various genes play in mosquito metamorphosis. To further the genetic analysis of our central hypothesis, and in investigations of other factors controlling mosquito growth and metamorphosis, we propose to develop in vivo transient transfection of mosquito larvae. Effective control of mosquito borne diseases will require an integrated approach [42] including transgenic mosquitoes, chemical control, avoidance of mosquitoes and immunization. ) PUBLIC HEALTH RELEVANCE: Mosquitoes are not just pests but can transmit the agents that cause deadly and seriously debilitating diseases such as malaria, dengue fever and westnile encephalitis. The long term goal of this research is to understand the molecular mechanisms that control mosquito larval growth and metamorphosis in order to identify potential targets that can be exploited to better control the number of blood-sucking, disease carrying mosquitoes. We propose to test, by knockdown of gene expression, the hypothesis that the genes broad and methoprene tolerant are central to mosquito development, and are in the pathway by which some insecticides block mosquito development.
描述(由申请人提供):每年,数以百万计的人死亡或严重衰弱,疟疾,登革热,黄热病和几种形式的病毒性脑炎。血管蚊子传递这些疾病的病因[1,2]。随着人类和蚊子种群的全球变暖和迁徙的增加,登革热可能传播到美国无登革热地区[3-8]。当前控制这些疾病的方法强调免疫,化学预防,对昆虫载体的控制以及与昆虫载体的接触减少。它们很有用,但是疾病仍然是重大问题,尤其是在不发达的热带国家[9,10]。尽管广泛使用,但对于化学载体控制剂起作用的分子机制而言,知之甚少,留下有限的选择来修改或改善这些控制方法。针对蚊子生物学的新计划正在开发中。一个倡议是发展具有降低疾病药物能力的转基因蚊子的发展[11-18]。为了实现这一目标,分子遗传技术已应用于蚊子研究。其中包括对冈比亚山脉的测序[19],艾德斯埃及[20]和Culex pipiens Genomes [21],开发了产生稳定的转基因蚊子[22-32]的技术[22-32],RNAI技术的使用,RNAI技术的使用[16,33-37],以及遗传驱动系统的开发以及遗传驱动系统的发展[24,38-41]。另外,分子遗传学技术可能揭示了化学蚊子控制剂起作用的分子机制。沿着这条线,我们的长期目标是了解控制蚊子幼虫中肠生长和变形的分子遗传机制,以识别可以利用的过程,以更好地控制携带蚊子的血噬性,疾病的种群。获得的信息可能会导致设计更具体和生物理性的幼虫化学物质,并且在转基因蚊子的设计中,在其中改变了生长和变质过程,从而降低了成人人群密度或繁殖力。驱动该建议的中心假设是甲丁烯耐受剂(MET)和宽(BR)是控制变态的转录因子级联的核心,以及在商业幼虫剂中广泛使用的幼年激素类似物的途径,与变质相互作用。这里提出的是中央假设的基因检测。我们使用蚊子是因为我们发现的信息可能直接适用于蚊子种群的控制。现在可以使用这种方法,因为我们开发了用于蚊子幼虫的RNAi技术,这为我们提供了一个独特的机会,可以从遗传上检查各种基因在蚊子变质中的作用。为了进一步对我们的中心假设的遗传分析,以及对控制蚊子生长和变态的其他因素的研究,我们提议发展蚊子幼虫的体内短暂转染。蚊子传播疾病的有效控制将需要综合方法[42],包括转基因蚊子,化学控制,避免蚊子和免疫接种。 ) 公共卫生相关性:蚊子不仅是害虫,而且可以传达导致致命和严重使人衰弱的药物,例如疟疾,登革热和西方脑炎。这项研究的长期目标是了解控制蚊子幼虫生长和变形的分子机制,以鉴定可以利用的潜在靶标,以更好地控制携带蚊子的疾病的血液数量。我们建议通过敲低基因表达测试,即宽阔和甲丁烯耐受性基因是蚊子发育的核心,并且在该途径中,某些杀虫剂阻止了蚊子发育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James T. Nishiura其他文献

James T. Nishiura的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James T. Nishiura', 18)}}的其他基金

Genetic Analysis of Mosquito Metamorphosis
蚊子变态的遗传分析
  • 批准号:
    8289516
  • 财政年份:
    2009
  • 资助金额:
    $ 11.78万
  • 项目类别:
Genetic Analysis of Mosquito Metamorphosis
蚊子变态的遗传分析
  • 批准号:
    7895740
  • 财政年份:
    2009
  • 资助金额:
    $ 11.78万
  • 项目类别:
Genetic Analysis of Mosquito Metamorphosis
蚊子变态的遗传分析
  • 批准号:
    8098198
  • 财政年份:
    2009
  • 资助金额:
    $ 11.78万
  • 项目类别:

相似国自然基金

艾德莱斯织物纹样建模技术研究
  • 批准号:
    61002050
  • 批准年份:
    2010
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing botanical-derived chemical tools for controlling mosquito vectors
开发植物源化学工具来控制蚊媒
  • 批准号:
    10596724
  • 财政年份:
    2022
  • 资助金额:
    $ 11.78万
  • 项目类别:
Bacteriophage modulation of mosquito microbiota
蚊子微生物群的噬菌体调节
  • 批准号:
    9979027
  • 财政年份:
    2020
  • 资助金额:
    $ 11.78万
  • 项目类别:
Generation of transmission-compromised mosquitoes
传播受限的蚊子的产生
  • 批准号:
    10039237
  • 财政年份:
    2020
  • 资助金额:
    $ 11.78万
  • 项目类别:
Role of the Gut Microbiome in Mosquito Development
肠道微生物组在蚊子发育中的作用
  • 批准号:
    10238773
  • 财政年份:
    2014
  • 资助金额:
    $ 11.78万
  • 项目类别:
Role of the Gut Microbiome in Mosquito Development
肠道微生物组在蚊子发育中的作用
  • 批准号:
    9804977
  • 财政年份:
    2014
  • 资助金额:
    $ 11.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了