Three-Dimensional (3D) Acoustofluidic Scanning Nanoscope with Super Resolution and Large Field of View

具有超分辨率和大视场的三维 (3D) 声流控扫描纳米镜

基本信息

  • 批准号:
    10670925
  • 负责人:
  • 金额:
    $ 36.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Over the past two decades, a number of “super-resolution” 3D imaging technologies have been developed, enabling researchers to observe nanoscale biological structures that were previously invisible to traditional, diffraction-limited imaging techniques. The ability to visualize cellular and subcellular structures at the nanoscale has revealed key insights into a variety of biological processes. Although impressive progress has been made in the development of 3D super-resolution imaging techniques, researchers are often forced to accept a tradeoff in terms of the resolution, field-of-view, speed, and ease of use of their 3D imaging technique. Recently, we have developed an acoustofluidic scanning nanoscope that can simultaneously achieve both super-resolution and large field-of-view imaging in 2D. In this R01 project, we will develop and validate a 3D acoustofluidic scanning nanoscope with the following features: (1) Super-resolution imaging with lateral and axial resolutions of ~50 nm and ~120 nm, respectively: The proposed 3D imaging method will achieve a resolution that is four times better than that from a confocal microscope, which makes the optical imaging of more detailed inner architecture of many subcellular structures possible; (2) Large field-of-view (~1,100×1,100 µm2): Conventional optical imaging methods achieve high-throughput imaging at the cost of reduced resolution and vice versa. By utilizing acoustics to simultaneously manipulate multiple microsphere lenses, the proposed imaging method will solve this long-standing technical barrier for large field-of-view imaging while maintaining superior lateral and axial resolution; (3) Imaging speed 10 times faster than that from a confocal microscope: Rapid z-stacking at a speed 10 times faster than that of a confocal microscope can be achieved by using surface acoustic waves to scan an array of microspheres across the sample volume in a precise, controllable manner; (4) Seamless connection to a conventional optical microscope for ease of use: Our device can be seamlessly connected to a conventional optical microscope without modification of the optical setup, which can significantly reduce the cost and the complexity of operation. With the aforementioned advantages, the proposed 3D acoustofluidic scanning nanoscope technology has the potential to significantly exceed current standards in the field and address many unmet needs. We will validate its performance by imaging 3D nanorod samples and the organelles of live HeLa cells. In this regard, we aim to demonstrate the far-reaching potential of our 3D acoustofluidic scanning nanoscope technology to enable improved research in areas ranging from subcellular imaging to the visualization of 3D neural activity.
项目概要 过去二十年,涌现出多项“超分辨率”3D成像技术, 使研究人员能够观察以前传统方法看不见的纳米级生物结构, 衍射极限成像技术能够在纳米尺度上可视化细胞和亚细胞结构。 尽管已经取得了令人印象深刻的进展,但揭示了对各种生物过程的重要见解。 在 3D 超分辨率成像技术的开发过程中,研究人员常常被迫接受一种权衡 最近,我们在 3D 成像技术的分辨率、视场、速度和易用性方面取得了进展。 开发了一种声流控扫描纳米显微镜,可以同时实现超分辨率和 2D 大视场成像 在这个 R01 项目中,我们将开发并验证 3D 声流扫描。 纳米显微镜具有以下特点:(1)超分辨率成像,横向和轴向分辨率~50 nm 和 ~120 nm:所提出的 3D 成像方法将实现四倍的分辨率 优于共焦显微镜,使得内部结构的光学成像更加细致 许多亚细胞结构成为可能;(2)大视场(~1,100×1,100 µm2):传统光学 成像方法以降低分辨率为代价实现高通量成像,反之亦然。 声学同时操纵多个微球透镜,所提出的成像方法将解决 这一长期存在的技术障碍是大视场成像同时保持卓越的横向和轴向 (3) 成像速度比共焦显微镜快 10 倍:快速 z 堆叠 通过使用表面声波,可以实现比共焦显微镜快 10 倍的速度 (4) 无缝 连接到传统光学显微镜以方便使用:我们的设备可以无缝连接 与传统光学显微镜相比,无需修改光学设置,可以显着降低 考虑到成本和操作的复杂性,所提出的 3D 声流控技术。 扫描纳米镜技术有可能大大超过该领域的当前标准 我们将通过对 3D 纳米棒样品和细胞器进行成像来解决许多未满足的需求。 在这方面,我们的目标是展示我们的 3D 声流控的深远潜力。 扫描纳米镜技术能够改进从亚细胞成像到 3D 神经活动的可视化。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Determining the laser-induced release probability of a nanoparticle from a soft substrate.
确定激光诱导纳米颗粒从软基质中释放的概率。
  • DOI:
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Gao, Xuesong;Byram, Chandu;Adams, Jordan;Zhao, Chenglong
  • 通讯作者:
    Zhao, Chenglong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Imad Agha其他文献

Imad Agha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
  • 批准号:
    62301355
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
  • 批准号:
    12374418
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
多孔声学超材料宏微观结构耦合强化吸声机制与多尺度结构设计技术
  • 批准号:
    52375122
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
轨道模式依赖的声学拓扑态及其应用研究
  • 批准号:
    12304492
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
  • 批准号:
    12304486
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SORDINO-fMRI for mouse brain applications
用于小鼠大脑应用的 SORDINO-fMRI
  • 批准号:
    10737308
  • 财政年份:
    2023
  • 资助金额:
    $ 36.99万
  • 项目类别:
Miniaturized AD/ADRD Microphysiological Systems Platform for High-throughput Screening
用于高通量筛选的小型化 AD/ADRD 微生理系统平台
  • 批准号:
    10761587
  • 财政年份:
    2023
  • 资助金额:
    $ 36.99万
  • 项目类别:
Noninvasive Repositioning of Kidney Stone Fragments with Acoustic Forceps
用声学钳无创重新定位肾结石碎片
  • 批准号:
    10589666
  • 财政年份:
    2023
  • 资助金额:
    $ 36.99万
  • 项目类别:
Maps as a service: A systematic approach to the production of tactile and audio/vibrational maps for visually impaired users
地图即服务:为视障用户制作触觉和音频/振动地图的系统方法
  • 批准号:
    10720207
  • 财政年份:
    2023
  • 资助金额:
    $ 36.99万
  • 项目类别:
The Influence of Virtual Reality Environments on Voice Perception and Production
虚拟现实环境对语音感知和产生的影响
  • 批准号:
    10666001
  • 财政年份:
    2023
  • 资助金额:
    $ 36.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了