Wolbachia disrupts eukaryotic endolysosomal membrane dynamics
沃尔巴克氏菌破坏真核细胞内溶酶体膜动力学
基本信息
- 批准号:10667824
- 负责人:
- 金额:$ 18.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-15 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAntibioticsBacteriaBacterial ProteinsBindingBiochemicalBiological ModelsBiologyBiotinylationBrugiaBrugia malayiCellular biologyCessation of lifeComplexCoupledDataDevelopmentDiseaseDissectionElephantiasisEndosomesEnsureEukaryotaFamilyFilarial ElephantiasesFilariasisGenesGeneticGoalsHumanIn VitroIndividualIntracellular MembranesIvermectinKnowledgeLaboratoriesLipid BiochemistryMembraneMembrane FusionMembrane ProteinsMicrobiologyModelingMolecularNematodaOcular OnchocerciasisOrganismOutcomePathogenicityPathway interactionsPhysiologyPopulationProcessProteinsPublishingReagentRegulationReportingReproductionResistanceSaccharomycetalesSymbiosisSystemTechnologyTestingTissuesVacuoleWolbachiaWorkYeastsendosymbiontgenetic manipulationglobal healthhuman diseasehuman pathogenin vivoinhibitorinsightnovelpathogenprotein degradationprotein functionprotein protein interactionprotein transportreceptortooltraffickingyeast protein
项目摘要
PROJECT SUMMARY
Filarial nematodes of the family Onchocercidae cause debilitating human diseases, such as lymphatic
filariasis. As approximately 150 million individuals are currently infected with these nematodes, obtaining in-
depth knowledge of pathogen biology will serve to address a global health issue. It is known that the filarial
nematode, Brugia malayi, harbors an intracellular endosymbiotic bacterium of the Wolbachia genus, and this
relationship is essential; clearance of Wolbachia from the nematode with antibiotics leads to eventual nematode
death. Understanding the mechanisms by which Wolbachia maintains its intracellular survival within nematodes
would therefore likely provide an important avenue towards controlling pathogenic nematode populations, but
both Brugia and Wolbachia are not amenable to genetic manipulations. Discoveries of important
bacterium:nematode interactions at the molecular level, therefore, have proven exceedingly difficult.
In this proposal, our goals are to utilize proteins from Wolbachia to genetically and biochemically dissect
conserved pathways of endolysosomal membrane dynamics in yeast. These secreted “effector” proteins are
known to alter host processes in order to support the survival of the bacterium in the eukaryotic host and to
ensure its own reproduction, and are therefore potent reagents that impact eukaryotic physiology. To this end,
my laboratory has employed the budding yeast, Saccharomoyces cerevisiae (Sce), as a model system towards
the discovery of bacterial proteins that modulate eukaryotic cellular biology, with a focus on those proteins which
inhibit intracellular membrane fusion and protein trafficking pathways.
In a previous screen of candidate wBm secreted effector proteins, we have already identified proteins
from wBm that have the ability to manipulate eukaryotic biology. In this work, we show that one such protein,
wBm0152, strongly inhibits endosome:vacuole trafficking pathways in vitro. This inhibition appears to result from
modulation of the conserved ESCRT complex. As wBm is known to alter membrane dynamics in its host during
its symbiosis, and coupled with the fact that regulation of membrane dynamics is strongly conserved throughout
eukaryotes, the detailed genetic, molecular, and biochemical studies carried out in this proposal will be applicable
to wBm:B. malayi interactions, and thus, human filarial diseases. Finally, leveraging our laboratory's strengths
in microbiology, cellular biology, and protein/ lipid biochemistry, we will carefully detail the biochemical activity of
this Wolbachia-derived ESCRT modulator and identify important regulators and binding partners in yeast, which
are likely conserved in Brugia. This work will begin to describe heretofore unknown wBm:B. malayi interactions,
thus providing novel insight into not only Brugia physiology, but also provide new insight into ESCRT-dependent
activities in eukaryotes.
项目概要
盘尾丝虫科的丝虫线虫会导致人类衰弱疾病,例如淋巴疾病
由于目前大约有 1.5 亿人感染了这些线虫,因此,
众所周知,对病原体生物学的深入了解将有助于解决全球健康问题。
线虫,马来丝虫,含有沃尔巴克氏菌属的细胞内内共生细菌,并且这种细菌
用抗生素从线虫中清除沃尔巴克氏体会导致最终的线虫。
了解沃尔巴克氏体在线虫中维持细胞内存活的机制。
因此可能为控制致病线虫种群提供重要途径,但是
布鲁氏菌和沃尔巴克氏菌都不适合进行重要的基因操作。
因此,细菌与线虫之间的相互作用已被证明很难超过分子水平。
在这项提案中,我们的目标是利用沃尔巴克氏体的蛋白质进行遗传和生化解剖
酵母中溶酶体膜动力学的保守途径是这些分泌的“效应”蛋白。
已知可以改变宿主过程以支持细菌在真核宿主中的生存并
确保其自身的繁殖,因此是影响真核生理学的有效试剂。
我的实验室采用了芽殖酵母,酿酒酵母(Sce),作为模型系统
调节真核细胞生物学的细菌蛋白质的发现,重点是那些能够调节真核细胞生物学的蛋白质
抑制细胞内膜融合和蛋白质运输途径。
在之前对候选 wBm 分泌效应蛋白的筛选中,我们已经鉴定了蛋白质
在这项工作中,我们展示了一种这样的蛋白质,
wBm0152,在体外强烈抑制内体:液泡运输途径。
众所周知,wBm 可以改变宿主体内的膜动力学。
它的共生关系,再加上膜动力学的调节在整个过程中都高度保守的事实
真核生物,本提案中进行的详细遗传、分子和生化研究将适用
最后,利用我们实验室的优势。
在微生物学、细胞生物学和蛋白质/脂质生物化学中,我们将仔细详细介绍
这种源自沃尔巴克氏体的 ESCRT 调节剂并鉴定了酵母中的重要调节剂和结合伴侣,
可能在 Brugia 中保守。这项工作将开始描述迄今为止未知的 wBm:B。
因此,不仅为布鲁氏菌生理学提供了新的见解,而且还为ESCRT依赖性提供了新的见解
真核生物中的活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vincent Joseph Starai其他文献
Vincent Joseph Starai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vincent Joseph Starai', 18)}}的其他基金
Bacterial inhibitors of eukaryotic membrane fusion
真核细胞膜融合的细菌抑制剂
- 批准号:
8600238 - 财政年份:2013
- 资助金额:
$ 18.42万 - 项目类别:
Bacterial inhibitors of eukaryotic membrane fusion
真核细胞膜融合的细菌抑制剂
- 批准号:
8502876 - 财政年份:2013
- 资助金额:
$ 18.42万 - 项目类别:
Bacterial inhibitors of eukaryotic membrane fusion
真核细胞膜融合的细菌抑制剂
- 批准号:
9187910 - 财政年份:2013
- 资助金额:
$ 18.42万 - 项目类别:
相似国自然基金
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
An RNA vaccines systems approach to Group A streptococcus vaccine discovery
发现 A 组链球菌疫苗的 RNA 疫苗系统方法
- 批准号:
10577082 - 财政年份:2023
- 资助金额:
$ 18.42万 - 项目类别:
Vanderbilt Antibody and Antigen Discovery for Clostridioides difficile Vaccines
艰难梭菌疫苗的范德比尔特抗体和抗原发现
- 批准号:
10625686 - 财政年份:2023
- 资助金额:
$ 18.42万 - 项目类别:
Koli: A non-surgical solution for gallstone disease
Koli:胆结石疾病的非手术解决方案
- 批准号:
10698949 - 财政年份:2023
- 资助金额:
$ 18.42万 - 项目类别:
Development of a Novel Animal Model for Spinal Cord Injury with Sepsis
脓毒症脊髓损伤新型动物模型的开发
- 批准号:
10665862 - 财政年份:2023
- 资助金额:
$ 18.42万 - 项目类别:
Diagnostic and treatment landscape of pyoderma gangrenosum
坏疽性脓皮病的诊治现状
- 批准号:
10732688 - 财政年份:2023
- 资助金额:
$ 18.42万 - 项目类别: