Sensing intracranial bioimpedance through anatomic windows for classifying stroke type

通过解剖窗感测颅内生物阻抗以对中风类型进行分类

基本信息

  • 批准号:
    10667998
  • 负责人:
  • 金额:
    $ 44.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT “Time lost is brain lost - every minute counts” – according to the Center for Disease Control (CDC) in reference to strokes. Stroke is the 5th leading cause of death in the United States, 2nd in the world and will cost the U.S. $183 billion annually by 2030. Every year 800,000 people will suffer a stroke in the U.S. alone and this high incidence contributes to stroke being a leading cause of serious, long-term disability in the US. There are two primary types of stroke: ischemic and hemorrhagic. Ischemic stroke involves blood or fatty plaque blocking a vessel of the brain while hemorrhagic is defined by a vessel rupture or brain bleed. Each type requires significantly different treatments, and treatment of the wrong type could have lethal consequences. This makes stroke type identification crucial to receiving treatment. Thus, neurologic monitoring and timely intervention are key for acute stroke recovery, yet currently no bedside monitor capable of detecting a recurrent stroke, hemorrhagic transformation and/or evolving stroke at onset exists. Today’s standard-of-care relies on monitoring general patient vitals and periodic CT/MRI scans to image the intracranial state; unfortunately, the large time periods between scans delays possible detection of a high-consequence change in condition. With every minute of pre-intervention time equating to an increase in lasting disability odds, a real-time monitor could not only save lives, but save the quality of life for this vulnerable population. We propose to develop a small form-factor, on- scene device capable of mapping the intracranial space and differentiating ischemic from hemorrhagic stroke. During this program we will take the significant step of developing this technology with translation in mind and demonstrating proof of feasibility in a pre-clinical human study of high-risk patients undergoing monitoring after being admitted for stroke. We will develop a non-invasive sensing approach to intracranial monitoring (Aim I), a key innovation for stroke use, and validate this sensing ability in a cohort of patients being monitored following stroke (Aim II). By assessing the feasibility of our novel approach to non-invasive intracranial monitoring in a tightly controlled patient cohort (post-stroke monitoring), we can validate our ability to 1) detect the presence of stroke and 2) differentiate stroke type. This technology has the potential to not only aid in the clinic as a monitor for detecting stroke onset within patients at high-risk for recurrent stroke or worsening status, but also in the field for mobile stroke type discrimination. Because this system has a small form-factor, is non-invasive, is relatively inexpensive (<$10k for an intracranial bioimpedance monitoring system), and is potentially able to discriminate stroke type at first contact with the patient, this technology has the potential of being easily translated to and accepted by the clinic for the benefit of diagnosing or tracking patients experiencing a stroke. We expect that by the end of this program we will be in a position to optimize and miniaturize our technology and to conduct a larger human study to demonstrate efficacy of our intracranial impedance monitoring technique.
抽象的 “失去时间就是失去大脑——每一分钟都很重要”——根据美国疾病控制中心 (CDC) 的参考资料 中风是美国第五大死因,世界第二大死因,将给美国带来巨大损失。 到 2030 年,每年将花费 1,830 亿美元。仅在美国,每年就有 80 万人遭受中风,而这一数字如此之高 在美国,中风是导致严重、长期残疾的主要原因之一。 中风的主要类型:缺血性和出血性 缺血性中风涉及血液或脂肪斑块阻塞。 脑血管出血是指血管破裂或脑出血。每种类型都需要。 显着不同的治疗方法,以及错误类型的治疗可能会产生致命的后果。 因此,神经系统监测和及时干预对于中风类型的识别至关重要。 急性中风恢复的关键,但目前没有床边监测器能够检测复发性中风, 出血性转化和/或中风发作时的进展是存在的,当今的护理标准依赖于监测。 不幸的是,一般患者生命体征和定期 CT/MRI 扫描对颅内状态进行成像; 扫描之间的时间间隔会延迟每分钟对严重后果变化的检测。 干预前的时间相当于持久残疾几率的增加,实时监测器不仅可以节省 我们建议开发一种小型的、on-的产品。 能够绘制颅内空间图并区分缺血性中风和出血性中风的现场设备。 在此计划期间,我们将在开发这项技术时迈出重要一步,同时考虑到翻译 并证明对接受监测的高危患者进行临床前人体研究的可行性证据 因中风入院后,我们将开发一种非侵入性颅内监测传感方法(Aim)。 I),中风使用的一项关键创新,并在一组被监测的患者中验证了这种传感能力 通过评估我们的无创颅内监测新方法的可行性。 在严格控制的患者队列中(中风后监测),我们可以验证我们的能力:1)检测存在 2) 区分中风类型 该技术不仅有潜力在临床上作为监测器提供帮助。 用于检测中风复发或病情恶化高危患者的中风发作,也可在现场进行 由于该系统具有体积小、非侵入性、相对性等特点。 价格便宜(颅内生物阻抗监测系统< 10,000 美元),并且有可能能够区分 首次与患者接触时的中风类型,该技术有可能很容易转化为和 被诊所接受,有利于诊断或跟踪中风患者,我们希望通过这种方式。 在该计划结束时,我们将能够优化和小型化我们的技术,并进行更大规模的研究 人体研究证明我们的颅内阻抗监测技术的有效性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan Joseph Halter其他文献

Ryan Joseph Halter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan Joseph Halter', 18)}}的其他基金

Ultrasound-coupled Electrical Impedance Tomography for Sarcopenia Assessment
用于肌肉减少症评估的超声耦合电阻抗断层扫描
  • 批准号:
    10760707
  • 财政年份:
    2023
  • 资助金额:
    $ 44.91万
  • 项目类别:
In vivo evaluation of a CT-compatible retractor for image guided trans-oral surgery
用于图像引导经口腔手术的 CT 兼容牵开器的体内评估
  • 批准号:
    10704145
  • 财政年份:
    2022
  • 资助金额:
    $ 44.91万
  • 项目类别:
In vivo evaluation of a CT-compatible retractor for image guided trans-oral surgery
用于图像引导经口腔手术的 CT 兼容牵开器的体内评估
  • 批准号:
    10575098
  • 财政年份:
    2022
  • 资助金额:
    $ 44.91万
  • 项目类别:
In vivo evaluation of a CT-compatible retractor for image guided trans-oral surgery
用于图像引导经口腔手术的 CT 兼容牵开器的体内评估
  • 批准号:
    10704145
  • 财政年份:
    2022
  • 资助金额:
    $ 44.91万
  • 项目类别:
BandPass: A Remote Monitoring System for Sarcopenia and Functional Decline
BandPass:肌肉减少症和功能衰退的远程监测系统
  • 批准号:
    10152884
  • 财政年份:
    2021
  • 资助金额:
    $ 44.91万
  • 项目类别:
BandPass: A Remote Monitoring System for Sarcopenia and Functional Decline
BandPass:肌肉减少症和功能衰退的远程监测系统
  • 批准号:
    10697080
  • 财政年份:
    2021
  • 资助金额:
    $ 44.91万
  • 项目类别:
Classifying Oral Lesions with Chip-on-tip Electrical Impedance Sensing
利用尖端芯片电阻抗传感对口腔病变进行分类
  • 批准号:
    10287597
  • 财政年份:
    2021
  • 资助金额:
    $ 44.91万
  • 项目类别:
Classifying Oral Lesions with Chip-on-tip Electrical Impedance Sensing
利用尖端芯片电阻抗传感对口腔病变进行分类
  • 批准号:
    10432090
  • 财政年份:
    2021
  • 资助金额:
    $ 44.91万
  • 项目类别:
A PORTABLE MULTI-MODAL OPTICO-IMPEDANCE SYTEM FOR EARLY WARNING OF PROGRESSION IN STABLE COVID-19 PATIENTS
用于对稳定的 COVID-19 患者病情进展进行早期预警的便携式多模态光阻抗系统
  • 批准号:
    10188939
  • 财政年份:
    2020
  • 资助金额:
    $ 44.91万
  • 项目类别:
Microendoscopic Electrical Impedance Sensing for Real-time Intraoperative Surgical Margin Assessment
用于实时术中手术边缘评估的显微内窥镜电阻抗传感
  • 批准号:
    10218115
  • 财政年份:
    2020
  • 资助金额:
    $ 44.91万
  • 项目类别:

相似海外基金

Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
  • 批准号:
    10759550
  • 财政年份:
    2023
  • 资助金额:
    $ 44.91万
  • 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
  • 批准号:
    10715238
  • 财政年份:
    2023
  • 资助金额:
    $ 44.91万
  • 项目类别:
A targeted analytical framework to optimize posthospitalization delirium pharmacotherapy in patients with Alzheimers disease and related dementias
优化阿尔茨海默病和相关痴呆患者出院后谵妄药物治疗的有针对性的分析框架
  • 批准号:
    10634940
  • 财政年份:
    2023
  • 资助金额:
    $ 44.91万
  • 项目类别:
Identifying patient subgroups and processes of care that cause outcome differences following ICU vs. ward triage among patients with acute respiratory failure and sepsis
确定急性呼吸衰竭和脓毒症患者在 ICU 与病房分诊后导致结局差异的患者亚组和护理流程
  • 批准号:
    10734357
  • 财政年份:
    2023
  • 资助金额:
    $ 44.91万
  • 项目类别:
Deep Learning Assisted Scoring of Point of Care Lung Ultrasound for Acute Decompensated Heart Failure in the Emergency Department
深度学习辅助急诊室急性失代偿性心力衰竭护理点肺部超声评分
  • 批准号:
    10741596
  • 财政年份:
    2023
  • 资助金额:
    $ 44.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了