Dynamic Biomaterial Design to Probe the Cellular Response to Fibrotic Stiffening
动态生物材料设计探测细胞对纤维化硬化的反应
基本信息
- 批准号:10669074
- 负责人:
- 金额:$ 39.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAgingArchitectureAttentionBiochemicalBiocompatible MaterialsBiogenesisBiological ModelsBiophysicsCardiac MyocytesCardiomyopathiesCell Culture TechniquesCell DeathCellsCessation of lifeChemistryChromatinChronicCicatrixContractsCuesCytoskeletonDNA DamageDNA MethylationDefectDepositionDiseaseDuchenne muscular dystrophyDystrophinEngineeringEpigenetic ProcessExhibitsExposure toExtracellular MatrixFailureFamilyFibrosisFluorescence MicroscopyFormulationFree RadicalsFunctional disorderGelGenerationsGenetic DiseasesGoalsGuanosine Triphosphate PhosphohydrolasesHeartHeart failureHeritabilityHumanHydrogelsImpairmentIn SituIn VitroIndividualInflammationInterventionKnowledgeLightLiverLungMeasuresMechanicsMediatingMemoryMicroscopyMitochondriaModelingModificationMolecularMutationOrgan failurePathogenesisPathogenicityPathologicPathway interactionsPatientsPatternPhenotypeProductionPropertyProteinsReactionReactive Oxygen SpeciesResearchResearch ProposalsRoleSarcomeresSignal TransductionSkeletal MuscleStimulusStressStructural ProteinSystemTherapeutic InterventionTimeTissue ModelTissuesTraction Force MicroscopyWorkbiomaterial compatibilitybisulfite sequencingblood pumpcycloadditiondesignfabricationimprintin vitro Modelinduced pluripotent stem cellinherited cardiomyopathyinsightlink proteinmechanotransductionnovelnovel strategiesresponserhorho GTP-Binding Proteinstemporal measurementtissue regenerationtissue repairwound healing
项目摘要
PROJECT SUMMARY
Despite the ubiquitous role of fibrosis in tissue dysfunction arising from aging and disease, no representative
in vitro model of the fibrotic microenvironment exists. Fibrosis is characterized by excess extracellular matrix
(ECM) deposition that stiffens the cellular microenvironment. Therefore, to model fibrosis in vitro, cell culture
substrates that permit quantitative, dynamic tuning of matrix mechanics are necessary. However, existing
dynamic hydrogel culture platforms generally rely on chemistries that may be toxic to cells or that simultaneously
change multiple parameters, making it difficult to assign causal relationships between altered matrix properties
and cell fate changes. Fibrotic stiffening occurs in a wide range of tissues, including the skeletal muscles, liver,
lungs, and heart. Numerous genetic cardiomyopathies are characterized by progressive fibrotic stiffening that
precedes heart failure. While fibrotic stiffening is known to impair the heart’s ability to pump blood, the impact of
stiffening on the phenotype of individual cardiomyocytes remains poorly understood. The goal of this research
proposal is to develop an in vitro model of tissue fibrosis based on dynamic hydrogel biomaterials that enables
real time measurement of cellular dysfunction to determine how progressive fibrotic stiffening detrimentally
impacts cell fate. As a model system, we will interrogate the effects of stiffening on human cardiomyocytes
differentiated from induced pluripotent stem cells from Duchenne muscular dystrophy (DMD) patients. DMD is
an ideal model system for studying outside-in mechanosignaling, as DMD arises from a lack of dystrophin, a
structural protein linking the contractile cytoskeleton to the ECM. We will use the dynamic hydrogels developed
during this research to assess contractile dysfunction, aberrant activation of mechanotransduction signaling, and
novel molecular mechanisms of “mechanical memory” arising from fibrotic stiffening.
In Aim 1, we will develop a synthetic hydrogel system that uses near-infrared light and bioorthogonal
reactions to dynamically stiffen the gels, mimicking fibrosis. These hydrogels will be used to determine how
contractile dysfunction arises from fibrotic stiffening. In Aim 2, we will determine how increased stiffness alters
biochemical signaling in cardiomyocytes, focusing both on “canonical” mechanotransduction through Rho
GTPases and YAP signaling and on a new mechanosensitive pathway in actively contracting cells that involves
mechanical generation of reactive oxygen species (ROS), DNA damage, and impaired mitochondrial biogenesis.
In Aim 3, we will investigate the first example of “mechanical memory” in cardiomyocytes. We will develop a
hydrogel platform that is stiffened by one wavelength of light and subsequently softened by a second wavelength.
This system will enable identification of molecular mechanisms by which exposure to a stiffened
microenvironment causes persistent cellular dysfunction and strategies to reverse this memory. The engineered
platforms developed will be broadly useful for studying fibrosis in progressive genetic diseases as well as aging.
项目概要
尽管纤维化在衰老和疾病引起的组织功能障碍中发挥着普遍的作用,但没有代表性的研究
纤维化微环境的体外模型存在纤维化的特征是细胞外基质过多。
(ECM) 沉积使细胞微环境变硬,因此,为了模拟体外纤维化,需要进行细胞培养。
然而,允许定量、动态调整基质力学的基质是必要的。
动态水凝胶培养平台通常依赖于可能对细胞有毒或同时具有毒性的化学物质
更改多个参数,使得很难分配矩阵属性之间的因果关系
纤维化硬化发生在多种组织中,包括骨骼肌、肝脏、
许多遗传性心肌病的特征是进行性纤维化硬化。
虽然已知纤维化硬化会损害心脏泵血的能力,但它的影响
心肌细胞僵硬对表型的影响仍知之甚少。
建议开发一种基于动态水凝胶生物材料的组织纤维化体外模型,该模型能够
实时测量细胞功能障碍,以确定进行性纤维化僵硬的痛苦程度
作为一个模型系统,我们将探讨硬化对人类心肌细胞的影响。
与杜氏肌营养不良症 (DMD) 患者的诱导多能干细胞分化而来。
是研究由外向内机械信号传递的理想模型系统,因为 DMD 是由于缺乏肌营养不良蛋白而产生的,
连接收缩细胞骨架和 ECM 的结构蛋白 我们将使用开发的动态水凝胶。
在这项研究中评估收缩功能障碍、机械转导信号的异常激活,以及
纤维化硬化产生的“机械记忆”的新分子机制。
在目标 1 中,我们将开发一种使用近红外光和生物正交的合成水凝胶系统
动态硬化凝胶的反应,模拟纤维化,这些水凝胶将用于确定如何进行。
收缩功能障碍是由纤维化僵硬引起的。在目标 2 中,我们将确定硬度增加如何改变。
心肌细胞中的生化信号传导,重点关注通过 Rho 的“规范”机械转导
GTPases 和 YAP 信号传导以及主动收缩细胞中的新机械敏感途径,涉及
活性氧 (ROS) 的机械生成、DNA 损伤和线粒体生物合成受损。
在目标 3 中,我们将研究心肌细胞中“机械记忆”的第一个例子。
水凝胶平台被一种波长的光硬化,随后被第二种波长软化。
该系统将能够识别暴露于硬化环境的分子机制。
微环境会导致持续的细胞功能障碍和逆转这种记忆的策略。
开发的平台将广泛用于研究进行性遗传疾病和衰老中的纤维化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Helen M Blau其他文献
Helen M Blau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Helen M Blau', 18)}}的其他基金
Control of Muscle Stem Cells to Enhance Regeneration
控制肌肉干细胞以增强再生
- 批准号:
10346767 - 财政年份:2022
- 资助金额:
$ 39.35万 - 项目类别:
Control of Muscle Stem Cells to Enhance Regeneration
控制肌肉干细胞以增强再生
- 批准号:
10558739 - 财政年份:2022
- 资助金额:
$ 39.35万 - 项目类别:
Dynamic Biomaterial Design to Probe the Cellular Response to Fibrotic Stiffening
动态生物材料设计探测细胞对纤维化硬化的反应
- 批准号:
10275443 - 财政年份:2021
- 资助金额:
$ 39.35万 - 项目类别:
Dynamic Biomaterial Design to Probe the Cellular Response to Fibrotic Stiffening
动态生物材料设计探测细胞对纤维化硬化的反应
- 批准号:
10463822 - 财政年份:2021
- 资助金额:
$ 39.35万 - 项目类别:
Regulation of eicosanoid signaling lipids to improve skeletal muscle function and increase healthspan during aging
调节类二十烷酸信号脂质以改善骨骼肌功能并延长衰老过程中的健康寿命
- 批准号:
10272407 - 财政年份:2020
- 资助金额:
$ 39.35万 - 项目类别:
Regulation of eicosanoid signaling lipids to improve skeletal muscle function and increase healthspan during aging
调节类二十烷酸信号脂质以改善骨骼肌功能并延长衰老过程中的健康寿命
- 批准号:
10263309 - 财政年份:2020
- 资助金额:
$ 39.35万 - 项目类别:
Regulation of eicosanoid signaling lipids to improve skeletal muscle function and increase healthspan during aging
调节类二十烷酸信号脂质以改善骨骼肌功能并延长衰老过程中的健康寿命
- 批准号:
10634523 - 财政年份:2020
- 资助金额:
$ 39.35万 - 项目类别:
Regulation of eicosanoid signaling lipids to improve skeletal muscle function and increase healthspan during aging
调节类二十烷酸信号脂质以改善骨骼肌功能并延长衰老过程中的健康寿命
- 批准号:
10402400 - 财政年份:2020
- 资助金额:
$ 39.35万 - 项目类别:
Improvement and standardization of a bioinformatic software suite for multiplexed imaging
用于多重成像的生物信息学软件套件的改进和标准化
- 批准号:
10609313 - 财政年份:2020
- 资助金额:
$ 39.35万 - 项目类别:
Regulation of eicosanoid signaling lipids to improve skeletal muscle function and increase healthspan during aging
调节类二十烷酸信号脂质以改善骨骼肌功能并延长衰老过程中的健康寿命
- 批准号:
10095406 - 财政年份:2020
- 资助金额:
$ 39.35万 - 项目类别:
相似国自然基金
角质形成细胞源性外泌体携载miR-31调控成纤维细胞ERK通路抗皮肤老化的作用机制
- 批准号:82373460
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
塑料光老化介导的微(纳)塑料形成和光解产物释放对雄性生殖内分泌的干扰研究
- 批准号:22376195
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
东北黑土中农膜源微塑料冻融老化特征及其毒性效应
- 批准号:42377282
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
- 批准号:12302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
苯乙烯-丁二烯共聚物力化学老化的自由基捕获光环加成协同修复机制
- 批准号:22303065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Using cellular co-biosis and age programmable mice to derive a global interaction map of aging hallmarks
使用细胞共生和年龄可编程小鼠来得出衰老标志的全局相互作用图
- 批准号:
10721454 - 财政年份:2023
- 资助金额:
$ 39.35万 - 项目类别:
Precision Medicine Digital Twins for Alzheimer’s Target and Drug Discovery and Longevity
用于阿尔茨海默氏症靶点和药物发现及长寿的精准医学数字孪生
- 批准号:
10727793 - 财政年份:2023
- 资助金额:
$ 39.35万 - 项目类别:
Delineating the role of let-7 microRNA on lung AT2 cell homeostasis, alveolar regeneration, and interstitial lung disease
描述let-7 microRNA对肺AT2细胞稳态、肺泡再生和间质性肺疾病的作用
- 批准号:
10634881 - 财政年份:2023
- 资助金额:
$ 39.35万 - 项目类别:
Microglial Activation and Inflammatory Endophenotypes Underlying Sex Differences of Alzheimer’s Disease
阿尔茨海默病性别差异背后的小胶质细胞激活和炎症内表型
- 批准号:
10755779 - 财政年份:2023
- 资助金额:
$ 39.35万 - 项目类别:
Molecular architecture of the human knee joint and pelvis at single cell resolution
单细胞分辨率下人类膝关节和骨盆的分子结构
- 批准号:
10659650 - 财政年份:2023
- 资助金额:
$ 39.35万 - 项目类别: